AimsThe REGENERATE-DCM trial is the first phase II randomized, placebo-controlled trial aiming to assess if granulocyte colony-stimulating factor (G-CSF) administration with or without adjunctive intracoronary (IC) delivery of autologous bone marrow-derived cells (BMCs) improves global left ventricular (LV) function in patients with dilated cardiomyopathy (DCM) and significant cardiac dysfunction.Methods and resultsSixty patients with DCM and left ventricular ejection fraction (LVEF) at referral of ≤45%, New York Heart Association (NYHA) classification ≥2 and no secondary cause for the cardiomyopathy were randomized equally into four groups: peripheral placebo (saline), peripheral G-CSF, peripheral G-CSF and IC serum, and peripheral G-CSF and IC BMC. All patients, except the peripheral placebo group, received 5 days of G-CSF. In the IC groups, this was followed by bone marrow harvest and IC infusion of cells or serum on Day 6. The primary endpoint was LVEF change from baseline to 3 months, determined by advanced cardiac imaging. At 3 months, peripheral G-CSF combined with IC BMC therapy was associated with a 5.37% point increase in LVEF (38.30% ± 12.97 from 32.93% ± 16.46 P = 0.0138), which was maintained to 1 year. This was associated with a decrease in NYHA classification, reduced NT-pro BNP, and improved exercise capacity and quality of life. No significant change in LVEF was seen in the remaining treatment groups.ConclusionThis is the first randomized, placebo-controlled trial with a novel combination of G-CSF and IC cell therapy that demonstrates an improvement in cardiac function, symptoms, and biochemical parameters in patients with DCM.
Objectives: Ghrelin is a brain-gut peptide with GH-releasing and appetite-inducing activities and a widespread tissue distribution. Ghrelin is the endogenous ligand of the GH secretagogue receptor type 1a (GHS-R1a), and both ghrelin and the GHS-R1a are expressed in the pituitary. There are conflicting data regarding the effects of ghrelin on cell proliferation. A positive effect on proliferation and activation of the mitogen-activated protein kinase (MAPK) pathway has been found in hepatoma, adipose, cardiomyocyte and prostate cell lines. However, ghrelin has also been shown to have antiproliferative effects on breast, lung and thyroid cell lines. We therefore examined the effect of ghrelin on the rat pituitary cell line GH3. Methods: RT-PCR was used for the detection of GHS-R1a and pre-proghrelin mRNA expression in GH3 cells. The effect of ghrelin on cell proliferation was studied using [ 3 H]thymidine incorporation; cell counting and the activation of the MAPK pathway were studied using immunoblotting and inhibitors of the extracellular signal-regulated kinase 1 and 2 (ERK 1/2), protein kinase C (PKC) and tyrosine phosphatase pathways. Results: GHS-R1a and ghrelin mRNA expression were detected in GH3 cells. Ghrelin 29 M compared with control), as well as on the cell count (control 6.8 £ 10 4^8 .7 £ 10 3 cells/ml vs desoctanoyl ghrelin (10 29 M) 1.04 £ 10 5^7 .5 £ 10 3 cells/ml; P , 0.01). Ghrelin caused a significant increase in phosphorylated ERK 1/2 in immunoblotting, while desoctanoyl ghrelin showed a smaller but also significant stimulatory effect. The positive effect of ghrelin and desoctanoyl ghrelin on [ 3 H]thymidine incorporation was abolished by the MAPK kinase inhibitor U0126, the PKC inhibitor GF109203X and the tyrosine kinase inhibitor tyrphostin 23, suggesting that the ghrelin-induced cell proliferation of GH3 cells is mediated both via a PKC-MAPK-dependent pathway and via a tyrosine kinase-dependent pathway. This could also be clearly demonstrated by Western blot analysis, where a transient increase in ERK 1/2 phosphorylation by ghrelin was attenuated by all three inhibitors. Conclusion: We have shown a novel role for ghrelin in stimulating the proliferation of a somatotroph pituitary tumour cell line, suggesting that ERK activation is involved in mediating the effects of ghrelin on cell proliferation. Desoctanoyl ghrelin showed a similar effect. As ghrelin has been shown to be expressed in both normal and adenomatous pituitary tissue, locally produced ghrelin may play a role in pituitary tumorigenesis via an autocrine/paracrine pathway.European Journal of Endocrinology 151 233-240
The future of this field of research will require closer collaboration between scientists and clinicians to understand how cell therapy works and to define the ideal cell type and method of delivery to be able to derive maximum benefit.
AimsThe effect of combined cytokine and cell therapy in ischaemic cardiomyopathy is unknown. Meta‐analyses suggest improved cardiac function with cell therapy. The optimal cell delivery route remains unclear. We investigated whether granulocyte colony‐stimulating factor (G‐CSF) alone or in combination with intracoronary (i.c.) or intramyocardial (i.m.) injection of autologous bone marrow‐derived cells (BMCs) improves cardiac function.Methods and resultsNinety patients with symptomatic ischaemic cardiomyopathy and no further treatment options were enrolled in the randomized, placebo‐controlled, single‐centre REGENERATE‐IHD study. Randomization was to one of three arms: peripheral, i.c., or i.m. In each arm, patients were randomized to active treatment or placebo. All patients, apart from the peripheral placebo group (saline only) received G‐CSF for 5 days. The i.c. and i.m. arms received either BMCs or serum (placebo). The primary endpoint was change in LVEF at 1 year assessed by cardiac magnetic resonance imaging/computed tomography. The i.m. BMC group showed a significant improvement in LVEF of 4.99% (95% confidence interval 0.33–9.6%; P = 0.038) at 1 year. This group also showed a reduction in NYHA class at 1 year and NT‐proBNP at 6 months. No other group showed a significant change in LVEF. This finding is supported by post‐hoc between‐group comparisons.ConclusionWe have shown that G‐CSF combined with autologous i.m. BMCs has a beneficial effect on cardiac function and symptoms. However, this result should be considered preliminary in support of a clinical benefit of i.m. stem cell infusion in ‘no option’ patients and needs further exploration in a larger study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.