Pakistan is an energy deficient country with depleting energy reserves and increasing energy demand. Due to excessive population growth, the domestic and commercial energy sectors are experiencing rising demand. To meet the requisite demand, renewables are favored rather than conventional counterparts. In this study, we model hybrid power systems using solar, wind and biomass resources for electrifying remote areas. The four locations are chosen for the study around a developing country, Pakistan, where each site is designed according to an isolated microgrid with maximum indigenous resources potential as per the requisite demands. A survey is conducted for the load demand and biomass availability. Optimization is conducted across objectives of minimum levelized cost of the generated energy, least the net present cost and lesser payback period. The optimal results were achieved in-terms of required objectives across southern sites as compared to northern counterparts. The cost of generated energy is comparable to grid electricity and ensures 24 h power supply without cut off and load shedding to the un-electrified rural area. The hybrid power system has a low carbon footprint across emissions due to the use of renewable resources. All the estimated load of rural communities is met with the available resources and mid-career impact has also been conducted across 10 years of the project life to fulfill the increasing load demand of the communities after installation. The results are validated via comparative analysis and show the effectiveness of the proposed study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.