This paper demonstrates a study to improve the total harmonic distortion (THD) originated due to excessive use of power electronic (PE) equipment and non-linear loads. Shunt active power filter (SAPF) is used to mitigate the harmonics from the system because it has the capability of minimizing the harmonic problems initiated by non-linear loads. The instantaneous reactive power (IRP) p-q theory is used for the generation of reference signal and for the extraction of compensating components of the current. The proportional integral (PI) controller and artificial neural network (ANN) have been employed in the DC-link controller and for current errors adjustments. In this paper, both conventional hysteresis and adaptive hysteresis band current controller (HBCC) have been used for the generation of gate pulses for the SAPF, which reduces THD in the source current to a value within IEEE specified standards, without any phase error over the extensive range of adaptive HBCC strategy. Simulation results confirm that the SAPF with HBCC and ANN performs the harmonic mitigation efficiently and maintains power factor (PF) close to unity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.