A digital signature is a mechanism designed to allow secure communication through an insecure medium and can be traced in many applications where privacy is required. A digital signature is an electronic signature that can be used to authenticate the identity of the sender of a message or the signer of a document and possibly to ensure that the original content of the message or document that has been sent is unchanged. The main purpose of this study was to extend important and useful digital signature schemes from the domain of natural integers Z to two principal ideal domains; namely, the domain of Gaussian integers Z[i] and the domain of the ring of polynomials over finite fields F[x] by extending arithmetic needed for our extensions to these domains. We implement the classical and modified RSA cryptosystem to compare and to test their functionality, reliability and security. To test the security of the algorithms we implement attack algorithms to solve the factorization problem in Z, Z[i] and F[x]. After factorization is found, the RSA problem could be solved by finding the private key using the extended Euclidean algorithm
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.