Online mode of education has been identified as the subtle solution to continue learning during the pandemic. However, the accessibility to online platforms, suitable devices, and connections are not equal across the globe thus raising the question of whether the opinion of the public in the South Asian region where the technology is not comparatively higher as in the western world would be the same as that to the global perspective. This study involves the sentiment analysis of natural language processing on recently tweeted data and concludes that the sentiment of the South Asian public remains positive as online education is the most suitable approach to overcome the learning difficulties during a pandemic. The study performs a ternary classification based on the polarity scores obtained from two robust lexicon-based sentiment analyzer tools namely VADER and TextBlob and observes that 63.2% of the tweets were positive, 30.5% of the tweets were neutral and around 6.3% of them were negative. Finally, topic modeling was also performed using the Latent Dirichlet Allocation method to gain insight into each of the classes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.