The structural and optical properties of GaAs1−xBix alloys for x up to 0.108 have been investigated by high resolution X‐ray diffraction and photoluminescence (PL). At room temperature (RT), the PL intensity of the GaAs0.97Bi0.03 sample was found to be ∼300 times higher than a GaAs control sample grown at the same temperature (400 °C). PL measurements carried out at 10 K show that when excitation power, Pex was increased from 0.11 to 1140 W cm−2, the PL peak energy blue‐shifts by 80 meV while the full‐width‐at‐half‐maximum reduces from 115 to 63 meV. However, the PL peak emission energy becomes independent of the excitation power at RT. The results indicate the presence of localized energy states in the GaAs0.97Bi0.03 sample, which trap carriers at low temperatures and that the majority of the carriers become delocalized at RT. Furthermore, the temperature dependent PL also shows an S‐shape behavior, which is a signature of localization effects. A theoretical model, which was derived by solving a rate equation was employed. The model successfully reproduces the observed S‐shape behavior and the theory fits well with the experimental data. The RT band gap of GaAs1−xBix for x up to 0.108 has been plotted and compared with the literature.
GaAs1−xBix alloys grown by molecular beam epitaxy for x up to 0.06 were studied by photoluminescence (PL). The results indicate that dilute fractions of bismuth (Bi) with x < 0.025 improve the material quality of this low temperature growth alloys by reducing the density of gallium (Ga) and/or arsenic related defects. The crystal quality starts to degrade at higher Bi concentration probably due to significant amount of Bi-related defects, BiGa. However, the room temperature PL intensity continues to increase with Bi content for the range studied due to greater band-gap offset between GaAs and GaAs1−xBix. Analysis carried out shows no correlation between localization effects and the room temperature PL enhancement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.