Coronavirus 2019 (COVID-19) spreads an extremely infectious disease where there is no specific treatment. COVID-19 virus had a rapid and unexpected spread rate which resulted in critical difficulties for public health and unprecedented daily life disruption. Thus, accurate, rapid, and early diagnosis of COVID-19 virus is critical to maintain public health safety. A graphite oxide-based field-effect transistor (GO-FET) was fabricated and functionalized with COVID-19 antibody for the purpose of real-time detection of COVID-19 spike protein antigen. Thermal evaporation process was used to deposit the gold electrodes on the surface of the sensor substrate. Graphite oxide channel was placed between the gold electrodes. Bimetallic nanoparticles of platinum and palladium were generated via an ultra-high vacuum (UHV) compatible system by sputtering and inert-gas condensation technique. The biosensor graphite oxide channel was immobilized with specific antibodies against the COVID-19 spike protein to achieve selectivity and specificity. This technique uses the attractive semiconductor characteristics of the graphite oxide-based materials resulting in highly specific and sensitive detection of COVID-19 spike protein. The GO-FET biosensor was decorated with bimetallic nanoparticles of platinum and palladium to investigate the improvement in the sensor sensitivity. The in-house developed biosensor limit of detection (LOD) is 1 fg/mL of COVID-19 spike antigen in phosphate-buffered saline (PBS). Moreover, magnetic labelled SARS-CoV-2 spike antibody were studied to investigate any enhancement in the sensor performance. The results indicate the successful fabrication of a promising field effect transistor biosensor for COVID-19 diagnosis.
It is commonly difficult to extract and amplify DNA from herbarium samples as they are old and preserved using different compounds. In addition, such samples are subjected to the accumulation of intrinsically produced plant substances over long periods (up to hundreds of years). DNA extraction from desert flora may pause added difficulties as many contain high levels of secondary metabolites. Herbarium samples from the Biology Department (UAE University) plant collection and fresh plant samples, collected from around Al-Ain (UAE), were used in this study. The three barcode loci for the coding genes matK, rbcL and rpoC1-were amplified. Our results showed that T. terresteris, H. robustum,T. pentandrus and Z. qatarense were amplified using all three primers for both fresh and herbaium samples. Both fresh and herbarium samples of C. comosum, however, were not amplified at all, using the three primers. Herbarium samples from A. javanica, C. imbricatum, T. aucherana and Z. simplex were not amplified with any of the three primers. For fresh samples 90, 90 and 80% of the samples were amplified using matK, rbcL and rpoC1, respectively. In short, fresh samples were significantly better amplified than those from herbarium sources, using the three primers. Both fresh and herbarium samples from one species (C. comosum), however, were not successfully amplified. It is also concluded that the rbcL regions showed real potentials to distinguish the UAE species under investigation into the appropriate family and genus.
The coronavirus disease-19 (COVID-19) pandemic is caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). At the molecular and cellular levels, the SARS-CoV-2 uses its envelope glycoprotein, the spike S protein, to infect the target cells in the lungs via binding with their transmembrane receptor, the angiotensin-converting enzyme 2 (ACE2). Here, we wanted to investigate if other molecular targets and pathways may be used by SARS-CoV-2. We investigated the possibility of the spike 1 S protein and its receptor-binding domain (RBD) to target the epidermal growth factor receptor (EGFR) and its downstream signaling pathway in vitro using the lung cancer cell line (A549 cells). Protein expression and phosphorylation were examined upon cell treatment with the recombinant full spike 1 S protein or RBD. We demonstrate for the first time the activation of EGFR by the Spike 1 protein associated with the phosphorylation of the canonical Extracellular signal-regulated kinase1/2 (ERK1/2) and AKT kinases and an increase in survivin expression controlling the survival pathway. Our study suggests the putative implication of EGFR and its related signaling pathways in SARS-CoV-2 infectivity and COVID-19 pathology. This may open new perspectives in the treatment of COVID-19 patients by targeting EGFR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.