Background: The hepatoprotective effect of a polyherbal formulation was evaluated in female rabbits. The herbal formulation was used alone and in combination with ascorbic acid (AsAc) in animals with paracetamol (ParCM)-induced hepatic damage. Methods: The study design included five groups, each comprised of five animals. Group A was the control group (untreated; given only routine diet) while group B was given a single oral dose of ParCM (2 g/kg) on day 9. Groups C, D and E were pretreated with polyherbal formulation (PoHF; 500 mg/kg), ascorbic acid (AsAc; 200 mg/kg) and PoHF (500 mg/kg) combined with ascorbic acid (AsAc; 200 mg/kg), respectively for 9 consecutive days. On the last day (day 9), after 30 minutes of routine treatments, a single dose of ParCM (2 g/ kg) was administered in groups C, D and E. Animals were sacrificed 24 hours after the last treatment. Blood and liver samples were collected from all animals. Serum was separated from the blood samples and subjected to biochemical tests for liver biomarker analysis. The biomarkers included alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and total bilirubin. Elevation of enzyme markers was considered an indicator of hepatocellular injury. Results: Serum levels of liver enzymes and total bilirubin were elevated significantly in group B when compared to group A. The level of serobiochemicals significantly dropped in group C but increased significantly in group D, as compared to group B.
For the past decade, the main problem that has attracted researchers’ attention in aerial robotics is the position estimation or Simultaneous Localization and Mapping (SLAM) of Unmanned Aerial Vehicles (UAVs) where the GPS signal is poor or denied. This article reviews the strengths and weaknesses of existing methods in the field of aerial robotics. There are many different techniques and algorithms that are used to overcome the localization and mapping problem of these UAVs. These techniques and algorithms use different sensors, such as Red Green Blue-Depth (RGB_D), Light Detecting and Ranging (LIDAR), and Ultra-wideband (UWB). The most common technique is used, i.e., probability-based SLAM, which uses two algorithms: Linear Kalman Filter (LKF) and Extended Kalman Filter (EKF). LKF consists of five phases and this algorithm is just used for linear system problems. However, the EKF algorithm is used for non-linear systems. Aerial robots are used to perform many tasks, such as rescue, transportation, search, control, monitoring, and different military operations because of their vast top view. These properties are increasing their demand as compared to human service. In this paper, different techniques for the localization of aerial vehicles are discussed in terms of advantages and disadvantages, practicality and efficiency. This paper enables future researchers to find the suitable SLAM solution based on their problems; either the researcher is dealing with a linear problem or a non-linear problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.