In 1999, Molodtsov introduced the concept of soft set theory as a general mathematical tool for dealing with uncertainty. Many researchers have studied this theory, and they created some models to solve problems in decision making and medical diagnosis, but most of these models deal only with one expert. This causes a problem with the user, especially with those who use questionnaires in their work and studies. In our model, the user can know the opinion of all experts in one model. So, in this paper, we introduce the concept of a soft expert set, which will more effective and useful. We also define its basic operations, namely, complement, union intersection AND, and OR. Finally, we show an application of this concept in decision-making problem.
We introduce the concept of possibility fuzzy soft set and its operation and study some of its properties. We give applications of this theory in solving a decision-making problem. We also introduce a similarity measure of two possibility fuzzy soft sets and discuss their application in a medical diagnosis problem.
In 1999, Molodtsov introduced the concept of soft set theory as a general mathematical tool for dealing with uncertainty. Alkhazaleh and Salleh (2011) define the concept of soft expert sets where the user can know the opinion of all experts in one model and give an application of this concept in decision making problem. So in this paper, we generalize the concept of a soft expert set to fuzzy soft expert set, which will be more effective and useful. We also define its basic operations, namely complement, union, intersection, AND and OR. We give an application of this concept in decision making problem. Finally, we study a mapping on fuzzy soft expert classes and its properties.
This paper presents distance measure between two complex Atanassov's intuitionistic fuzzy sets (CAIFSs). This distance measure is used to illustrate an application of CAIFSs in solving one of the most core application areas of fuzzy set theory, which is multiattributes decision-making (MADM) problems, in complex Atanassov's intuitionistic fuzzy realm. A new structure of relation between two CAIFSs, called complex Atanassov's intuitionistic fuzzy relation (CAIFR), is obtained. This relation is formally generalised from a conventional Atanassov's intuitionistic fuzzy relation, based on complex Atanassov's intuitionistic fuzzy sets, in which the ranges of values of CAIFR are extended to the unit circle in complex plane for both membership and nonmembership functions instead of [0, 1] as in the conventional Atanassov's intuitionistic fuzzy functions. Definition and some mathematical concepts of CAIFS, which serve as a foundation for the creation of complex Atanassov's intuitionistic fuzzy relation, are recalled. We also introduce the Cartesian product of CAIFSs and derive two properties of the product space. The concept of projection and cylindric extension of CAIFRs are also introduced. An example of CAIFR in real-life situation is illustrated in this paper. Finally, we introduce the concept of composition of CAIFRs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.