Atopic dermatitis (AD) is a relapsing inflammatory skin disease with a complicated pathogenesis. This study aimed to investigate whether miR-375-3p could regulate AD through the Yes-associated protein 1 (YAP1) pathway. In this study, inflammatory response was induced by TNF-α and IFN-γ administration in HaCaT cells. We found that viability and inflammatory factor release, including interleukin-1β (IL-1β) and IL-6, were negatively related to miR-375-3p expression in HaCaT cells. We also found that YAP1 overexpression down-regulated lympho-epithelial Kazal type inhibitor (LEKTI) levels and aggravated viability and inflammation in TNF-α and IFN-γ-treated HaCaT cells. Dual-luciferase reporter assay proved the targeted binding of miR-375-3p and YAP1 3ʹ-UTR. Additionally, the protective effect of miR-375-3p on inflammatory response in TNF-α and IFN-γ-treated HaCaT cells could be impeded by YAP1 overexpression. Collectively, our results suggested that miR-375-3p could modulate HaCaT cell viability and inflammation through the YAP1/LEKTI pathway.
Excessive scar formation post burn injury can cause great pain to the patients.MiR-133a-3p has been demonstrated to be anti-fibrotic in some fibrosis-related diseases. However, its possible role in scar formation has not been elucidated yet. In present study, the effect of miR-133a-3p on scar formation was investigated in a scalded model of mice. Moreover, the function of miR-133a-3p on proliferation and migration of scar-derived fibroblasts (SFs) was studied in vitro. It was found that miR-133a-3p was dramatically downregulated in scar tissue of scalded mice.Upregulation of miR-133a-3p by miR-133a-3p agomir obviously inhibited the scar formation in scalded mice. Histological staining showed that upregulation of miR-133a-3p attenuated the excessive deposition of collagen in scar tissue of scalded mice. In vitro study showed that upregulation of miR-133a-3p effectively suppressed the proliferation and migration of SFs. Besides, upregulation of miR-133a-3p attenuated the protein levels of α-smooth muscle actin (α-SMA) and collagen I, indicating that miR-133a-3p could suppress the activation of SFs. The expression of connective tissue growth factor (CTGF), a critical mediator in cell proliferation, migration and extracellular matrix (ECM) synthesis, was also downregulated by the upregulation of miR-133a-3p. Luciferase reporter assay validated that CTGF was directly targeted by miR-133a-3p. In addition, overexpression of CTGF abolished the effect of miR-133a-3p on inhibiting the proliferation, migration and activation of SFs, indicating that miR-133a-3p functioned by targeting CTGF. Therefore, miR-133a-3p might be a promising target for treating pathological scars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.