In the near future, the Internet of Vehicles (IoV) is foreseen to become an inviolable part of smart cities. The integration of vehicular ad hoc networks (VANETs) into the IoV is being driven by the advent of the Internet of Things (IoT) and high-speed communication. However, both the technological and non-technical elements of IoV need to be standardized prior to deployment on the road. This study focuses on trust management (TM) in the IoV/VANETs/ITS (intelligent transport system). Trust has always been important in vehicular networks to ensure safety. A variety of techniques for TM and evaluation have been proposed over the years, yet few comprehensive studies that lay the foundation for the development of a “standard” for TM in IoV have been reported. The motivation behind this study is to examine all the TM models available for vehicular networks to bring together all the techniques from previous studies in this review. The study was carried out using a systematic method in which 31 papers out of 256 research publications were screened. An in-depth analysis of all the TM models was conducted and the strengths and weaknesses of each are highlighted. Considering that solutions based on AI are necessary to meet the requirements of a smart city, our second objective is to analyze the implications of incorporating an AI method based on “context awareness” in a vehicular network. It is evident from mobile ad hoc networks (MANETs) that there is potential for context awareness in ad hoc networks. The findings are expected to contribute significantly to the future formulation of IoVITS standards. In addition, gray areas and open questions for new research dimensions are highlighted.
Trust is one of the core components of any ad hoc network security system. Trust management (TM) has always been a challenging issue in a vehicular network. One such developing network is the Internet of vehicles (IoV), which is expected to be an essential part of smart cities. IoV originated from the merger of Vehicular ad hoc networks (VANET) and the Internet of things (IoT). Security is one of the main barriers in the on-road IoV implementation. Existing security standards are insufficient to meet the extremely dynamic and rapidly changing IoV requirements. Trust plays a vital role in ensuring security, especially during vehicle to vehicle communication. Vehicular networks, having a unique nature among other wireless ad hoc networks, require dedicated efforts to develop trust protocols. Current TM schemes are inflexible and static. Predefined scenarios and limited parameters are the basis for existing TM models that are not suitable for vehicle networks. The vehicular network requires agile and adaptive solutions to ensure security, especially when it comes to critical messages. The vehicle network's wireless nature increases its attack surface and exposes the network to numerous security threats. Moreover, internet involvement makes it more vulnerable to cyberattacks. The proposed TM framework is based on context-based cognition and machine learning to be best suited to IoV dynamics. Machine learning is the best solution to utilize the big data produced by vehicle sensors. To handle the uncertainty Bayesian machine learning statistical model is used. The proposed framework can adapt scenarios dynamically and infer using the maximum possible parameter available. The results indicated better performance than
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.