The role unconventional T cells play in protective immunity in humans is unclear. Mucosal-associated invariant T (MAIT) cells are an unconventional T cell subset restricted to the antigen-presenting molecule MR1. Here, we report the discovery of a patient homozygous for a rare Arg31His (R9H in the mature protein) mutation in MR1 who has a history of difficult-to-treat viral and bacterial infections. MR1R9H was unable to present the potent microbially derived MAIT cell stimulatory ligand. The MR1R9H crystal structure revealed that the stimulatory ligand cannot bind due to the mutation lying within, and causing structural perturbation to, the ligand-binding domain of MR1. While MR1R9H could bind and be up-regulated by a MAIT cell inhibitory ligand, the patient lacked circulating MAIT cells. This shows the importance of the stimulatory ligand for MAIT cell selection in humans. The patient had an expanded γδ T cell population, indicating a compensatory interplay between these unconventional T cell subsets.
The methionine-folate cycle-dependent one-carbon metabolism is implicated in the pathophysiology of schizophrenia. Since schizophrenia is a developmental disorder, we examined the effects that perturbation of the one-carbon metabolism during gestation has on mice progeny. Pregnant mice were administered methionine equivalent to double their daily intake during the last week of gestation. Their progeny (MET mice) exhibited schizophrenia-like social deficits, cognitive impairments and elevated stereotypy, decreased neurogenesis and synaptic plasticity, and abnormally reduced local excitatory synaptic connections in CA1 neurons. Neural transcript expression of only one gene, encoding the Npas4 transcription factor, was >twofold altered (downregulated) in MET mice; strikingly, similar Npas4 downregulation occurred in the prefrontal cortex of human patients with schizophrenia. Finally, therapeutic actions of typical (haloperidol) and atypical (clozapine) antipsychotics in MET mice mimicked effects in human schizophrenia patients. Our data support the validity of MET mice as a model for schizophrenia, and uncover methionine metabolism as a potential preventive and/or therapeutic target.
BackgroundAutosomal dominant mental retardation 21 (MRD21) is a very rare condition, characterized by short stature, microcephaly, mild facial dysmorphisms and intellectual disability that ranged from mild to severe. MRD21 is caused by mutations in CCCTC-binding factor (CTCF) and this was established through only four unrelated cases, two of which had frameshift mutations. CTCF is a master transcriptional regulator that controls chromatin structure and may serve as insulator and transcriptional activator and repressor.Case presentationThis study presents, clinically and molecularly, an Emirati patient with de novo frameshift mutation in CTCF. This novel mutation was uncovered using whole exome sequencing and was confirmed by Sanger sequencing in the trio. In silico analysis, using SIFT Indel, indicates that this frameshift; p.Lys206Profs*13 is functionally damaging with the likely involvement of nonsense-mediated mRNA decay.ConclusionsUpon comparing the clinical picture of the herewith-reported individual with previously reported cases of MRD21, there seems to be many common symptoms, and few new ones that were not observed before. This helps to further define this rare condition and its molecular underpinnings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.