To use rodent models effectively in in-vivo investigations on oral drug and vaccine delivery, the conditions in the gastrointestinal tract must be understood. Some fundamental information is currently unavailable or incomplete. We have investigated the pH, water content and lymphoid tissue distribution along the gastrointestinal tract, as well as the stomach volume, as these were critical to our investigations on pH-responsive drug delivery and colonic vaccination. The observed values were compared with those in man as an indication of the validity of the rodent model. The mouse stomach pH was 3.0 (fed) and 4.0 (fasted), and the corresponding values in the rat were 3.2 (fed) and 3.9 (fasted). The mean intestinal pH was lower than that in man (
25The use of fused-filament 3D printing (FF 3DP)
30A final drug-loading of 0.29% w/w was achieved. Tablets of PVA/Fluorescein (10 mm 31 diameter) were printed using a 3D printer. It was found that changing the degree of
The aim of this study was to explore the potential of fused-deposition 3-dimensional printing (FDM 3DP) to produce modified-release drug loaded tablets. Two aminosalicylate isomers used in the treatment of inflammatory bowel disease (IBD), 5-aminosalicylic acid (5-ASA, mesalazine) and 4-aminosalicylic acid (4-ASA), were selected as model drugs. Commercially produced polyvinyl alcohol (PVA) filaments were loaded with the drugs in an ethanolic drug solution. A final drug-loading of 0.06% w/w and 0.25% w/w was achieved for the 5-ASA and 4-ASA strands, respectively. 10.5mm diameter tablets of both PVA/4-ASA and PVA/5-ASA were subsequently printed using an FDM 3D printer, and varying the weight and densities of the printed tablets was achieved by selecting the infill percentage in the printer software. The tablets were mechanically strong, and the FDM 3D printing was shown to be an effective process for the manufacture of the drug, 5-ASA. Significant thermal degradation of the active 4-ASA (50%) occurred during printing, however, indicating that the method may not be appropriate for drugs when printing at high temperatures exceeding those of the degradation point. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) of the formulated blends confirmed these findings while highlighting the potential of thermal analytical techniques to anticipate drug degradation issues in the 3D printing process. The results of the dissolution tests conducted in modified Hank's bicarbonate buffer showed that release profiles for both drugs were dependent on both the drug itself and on the infill percentage of the tablet. Our work here demonstrates the potential role of FDM 3DP as an efficient and low-cost alternative method of manufacturing individually tailored oral drug dosage, and also for production of modified-release formulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.