The state-space representations grant a convenient, compact, and elegant way to examine the physical systems, e.g., induction and synchronous generator-based wind turbines, with facts readily available for stability, controllability, and observability analysis. In this paper, the model order reduction of a stable doubly fed induction generator based variable-speed wind turbines model is performed with the aid of the proposed stability preserving balanced realization algorithm based on discrete frequency weights and limited frequency-interval. The frequency weighting and limited frequency-intervals-based model order reduction techniques presented by Enns's and Wang & Zilouchian produce an unstable reduced-order model at certain frequency weights and frequency intervals, respectively. To overcome this main drawback, many researchers provided a solution to preserve the stability of the reduced-order model. However, these existing approaches also produce an unstable reduced-order model in some conditions and produce a large variation to the original system; consequently, they provide a large approximation error. The proposed approach not only ensures the stability of the reduced-order model but also provides low approximation error as compared with other existing approaches and also provides an easily calculable a priori error bound formula. The proposed work produces steady and precise outcomes in contrast to conventional reduction methods, which shows the efficacy of the proposed algorithm.
Interleaving is a key to Turbo coding's exceptional performance. An interleaver provides bit-permutation designed to ensure deterministic randomness. When applying interleavers to unequal error protecting (UEP) Turbo codes, typically, priority classes protected with different rates are kept separate. This work, however, gives insight, how the performance changes, when block boundaries are relaxed, leaking bits to other classes.The effect of this leakage is an improvement of the average performance due to a virtually bigger interleaver size, with the drawback of a flooring of the individual performances to the worst protection (highest code rate) involved in a certain class.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.