Known hybrid orthogonal frequency division multiplexing-digital filter multiple access (OFDM-DFMA) PONs show promise of seamless and cost-effective convergence of optical and mobile networks for 5G and beyond. This paper reports, for the first time, a new hybrid OFDM-DFMA PON based on intensity modulation and direct detection (IMDD), obtained by modifying digital signal processing (DSP) algorithms embedded in both the OLT and ONUs. The proposed PON allows two spectrally overlapped sub-bands to occupy each individual sub-wavelength spectral region to independently transmit upstream ONU information. A model of the proposed PON is developed and its upstream transmission performances are numerically explored for different application scenarios. Compared with the previously published PON, the proposed PON doubles the number of supported ONUs and provides >1.7-fold aggregate upstream signal transmission capacity increases with <1.5dB upstream power budget degradations. Alternately, for the same ONU count, >2.2-fold aggregate upstream signal transmission capacity increases and >0.7dB upstream power budget improvements are achievable. The performance improvements vary by <18% for a transmission distance range as large as 50km. In addition, the proposed PON is tolerant to finite digital filter tap length-induced channel interferences.
By utilizing digital orthogonal filtering (DOF) in the digital domain, we report, for the first time, experimental demonstrations of aggregated 30.078Gb/s/λ transmissions of DOF-multiplexed spectrally-overlapped and/or frequency gapless six channels over IMDD PON systems incorporating off-the-shelf and low-cost 10G-class optical devices. Experimental results show that simple adaptive channel power loading implemented in the digital domain enables very similar transmission performances of individual channels regardless of their locations in the digital filter space. As a direct result of the interplay between the transmission system-associated negative chromatic dispersion and the intensity modulation-induced frequency chirp, negative power penalties of >0.2dB are experimentally observed for all the involved channels under various transmission system configurations. In addition, excellent performance robustness of the demonstrated systems is also obtainable for various transmission distances up to 45km.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.