Abstract:Recently, considerable attention has justifiably been directed towards energy savings in buildings as they account for up to 20-40% of total energy consumption in developed countries. In the United Kingdom, studies have revealed that buildings' CO 2 emissions for account for at least 43% of total emissions. Window panels are a major component of the building fabric with considerable influence on the façade energy performance and are accountable for up to 60% of a building's overall energy loss. Therefore, the thermal performance of glazing materials is an important issue within the built environment. This work evaluates the impact of solar window films on the overall energy consumption of an existing commercial building via the use of a case study U.K. hotel and TAS dynamic simulation software. The study results demonstrated that the impact of window films on the overall energy consumption of the case study hotel is approximately 2%. However, an evaluation of various overall energy consumption components showed that the window films reduce the annual total cooling energy consumption by up to 35% along with a marginal 2% increase in the annual total heating energy consumption. They can also provide overall cost and CO 2 emissions savings of up to 3%.
Adverse effects of anthropogenic climate change has resulted in mitigation strategies geared towards curbing CO 2 emissions. Consequently, this has increased demand for more energy efficient buildings. Considerable amounts of studies have shown the existence of a significant discrepancy between estimated energy consumption by thermal simulation software and actual building operational energy; this is referred to as a 'performance gap'. This work presents a method of improving the energy consumption estimate in an existing non-domestic building via the use of a case study UK hotel (Hilton Reading) and Engineering Development Solutions limited (EDSL) TAS thermal simulation software. The method involves evaluating consumption estimates through plant modelling, and modifying this result by surveying the site to verify the simulation data and including estimates of unaccounted building energy use such as catering services which can be significant in hotels. The energy consumption result for this case study building gives an estimate which is within 12% of the actual building consumption data. The result also demonstrated that such models can produce energy consumption estimates that are up to 23% more accurate than building regulation compliance models and that more accurate simulation consumption estimates can be achieved by accounting for more unregulated energy uses, for example, lifts, servers and small power load.
Several studies have highlighted Combine Heat and Power (CHP) systems to be one of the proven and reliable technologies that can improve the efficiency of heat and electricity generation. The extensive adoption of this type of technology is crucial in reducing building emissions globally and in the U.K. This work uses a dynamic simulation software to evaluate the effect of CHP on the energy performance of an existing U.K. hotel and subsequently an approach to aid in the selection of optimum CHP size. The outcome of the study indicated that CHP systems in hotel buildings can provide considerable economic and environmental benefits with either maximally-sized CHP founded on the building's base heat demand or with reduced CHP size of more than 50% smaller than the estimated maximum size. The optimum size design can be obtained through evaluation of the relationship between the main performance parameters and their variation with CHP sizes.
The advantages of double-skin facade (DSF) systems, ranging between their aesthetic architectural benefits, acoustic benefits and ability to decrease the heating demand of the internal environment, have increased their popularity in Europe since the mid-1980s. However, appropriate consideration must be accorded to their design to ensure that their possible advantages are not negated. This work evaluates how the effect of extraction fans installed in the cavity of the DSF adjoining a central atrium impacts the thermal condition of the atrium and, consequently, the overall energy consumption of an existing UK hotel building. The results of the investigation demonstrated that the DSF extraction fans improve the internal temperature and condition of the adjacent central atrium, particularly in the summer. The fans result in a marginal increase in the overall energy consumption when operated throughout the year; hence, the optimum schedule for the operation of the extraction fans is during the cooling-dominant period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.