Haemophilus influenzae acquires iron from the iron-transporting glycoprotein transferrin via a receptor-mediated process. This involves two outer-membrane transferrin-binding proteins (Tbps) termed T b p l and Tbp2 which show considerable preference for the human form of transferrin. Since the Tbps are attracting considerable attention as potential vaccine components, we used transferrin affinity chromatography to examine their conservation amongst 28 H. influenzae type b strains belonging to different outer-membrane-protein subtypes as well as six non-typable strains. Whole cells of all type b and nontypable strains examined bound human transferrin; whilst most strains possessed a T b p l of approximately 105 kDa, the molecular mass of Tbp2 varied from 79 to 94 kDa. Antisera raised against affinity-purified native H. influenzae TbpllTbp2 receptor complex cross-reacted on Western blots with the respective Tbps of all the Haemophilus strains examined. When used to probe Neisseria meningitidis Tbps, sera from each of four mice immunized with the Haemophilus TbplR complex recognized the 68 kDa Tbp2 of N. meningitidis strain B16B6 but not the 78 kDa Tbp2 of N. meningitidis strain 70942. Serum from one mouse also reacted weakly with T b p l of strain B16B6. Apart from a weak reaction with the Tbp2 of a serotype 5 strain, this mouse antiserum failed to recognize the Tbps of the porcine pathogen A. pleuropneumoniae. However, a monospecif ic polyclonal antiserum raised against the denatured Tbp2 of Neisseria meningitidis B16B6 recognized the Tbps of all Haemophilus and Actinobacillus strains examined. Since H. influenzae forms part of the natural flora of the upper respiratory tract, human sera were screened for the presence of antibodies to the Tbps. Sera from healthy adults contained antibodies which recognized both T b p l and Tbp2 from H. influenzae but not N. meningitidis. Convalescent sera from meningococcal meningitis patients contained antibodies which, on Western blots, recognized the Tbps2s of both pathogens. These data demonstrate the existence of shared epitopes on the Tbps of H. influenre, N. meningitidis and A. pleuropneumoniae despite their transferrin species specificity.
The iron repressible nature of Haemophilus influenzae transferrin binding proteins suggests a regulatory role for elemental iron in their expression. The existence of a Haemophilus ferric uptake repressor (Fur) binding motif identified in the promoter region of both tbpA and tbpB further supports this hypothesis. However, a recent study using brain heart infusion growth medium suggested that transferrin binding protein synthesis in H. influenzae was haem-rather than iron-regulated. The present study re-investigates this observation and using a chemically defined medium, we demonstrate that elemental iron haem or protoporphyrin IX can each regulate Haemophilus influenzae transferrin, haemopexin and haemoglobin receptor expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.