Acute myeloid leukemia (AML) is an aggressive and heterogeneous disease characterized by an abnormal proliferation and impaired differentiation of the myeloid precursor cells. The outcome for most AML patients remains poor with high relapse rates and chemotherapy remains the first line treatment for AML. The Wilms tumor wt1 and the anti-apoptotic BCL2 genes are upregulated in AML and are known to be involved in apoptosis inhibition. In the present study we evaluated the molecular mechanisms underlie the anti-proliferative and pro-apoptotic activities exerted by thymoquinone (TQ), the major biologically active compound of the black seed oil on acute myeloid leukemia (AML) cell line-HL60. Cell proliferation was determined by WST-1 assay and apoptosis rate was assessed by flow cytometry using annexin-V/7AAD staining. The expression of target genes was analyzed by real-time RT–PCR analysis. TQ significantly reduced HL60 cell viability and induced apoptosis in a dose and time-dependent manner. In order to decipher the molecular mechanisms underlie the anti-cancer activities induced by TQ in AML cells, we investigated its effect on the expression of WT1 and BCL2 genes. TQ significantly decreased the expression of WT1 and BCL2 genes in a dose and time-dependent manner. In summary, these findings suggest that TQ induces cell proliferation inhibition and apoptosis in acute myeloid leukemia cells most likely through targeting the apoptosis-related WT1 and BCL2 genes and also suggest that TQ could be a promising strategy for AML therapy.
Human hepatocellular carcinoma (HCC) is the most prevalent and recurrent type of primary adult liver cancer without any effective therapy. Thus, there is an increase demands for finding new drugs and treatment strategies with selective and potent effects towards HCC. Plant-derived compounds acting as anti-cancer agents can induce apoptosis through targeting several signaling pathways. Thymoquinone (TQ), the major biologically active compound of the black seed oil (Nigella sativa) has demonstrated inhibitory activities on various cancers by targeting several pathways. In the present study, we have evaluated the molecular mechanisms that underlie the anti-proliferative, anti-metastatic, and pro-apoptotic activities exerted by TQ on liver cancer cell lineHepG2, a well-documented HCC in vitro model. Cell proliferation was determined by WST-1 assay, apoptosis rate was assessed by flow cytometry using annexin-V/7AAD staining, wound healing assay to investigate the metastasis, and the expression of target genes was assessed by Real-time RT–PCR analysis. We found that TQ significantly reduced HepG2 cell viability and induced apoptosis in a dose-dependent manner. Migration of HepG2 cells was suppressed in response to TQ. Moreover, TQ decreased the expression of several angiogenesis-related genes including versican (VCAN), growth factor receptor-bound protein 2 (Grb2), and the histone methyltransferase for lysine 27 of histone 3 (EZH2). The findings suggest that TQ exerts inhibitory effects on HCC most likely through targeting key genes involved in the invasiveness and
Cancer and diabetes are critical risks that reveal many complications. Metformin has long been used in herbal medicine as an anti-diabetes medicine. It is one of the first-line therapies for type two (T2D that has gained use across different healthcare systems. It is the most preferred form of treatment due to its safety, being readily available, and widely used because it has fewer and affordable side effects for many users. The repurposing of metformin used in other treatments to treat cancer patients or the combination of targeted treatments with metformin can reduce the side effects of chemotherapy drugs, enhance the effectiveness, and may reduce resistance to targeted drugs. The mechanism of metformin has been demonstrated and its association with other drugs. It Inhibits cell growth and stops the cell cycle, and stimulates programmed cell death and autophagy of various cancer cells. Patients with diabetes and different kinds of malignancies such as colorectal, hepatic, and ovarian cancers have better response rates after metformin treatment. A combination of metformin and new medications has had a significant effect on those who do not receive metformin. On the other hand, prevailing evidence has greatly proved the benefit of using metformin as an adjuvant agent in medical oncology practice.
Medicinal plants provide a wide range of active compounds that can be exploited to create novel medicines with minimal side effects. The current study aimed to identify the anticancer properties of Juniperus procera (J. procera) leaves. Here, we demonstrate that J. procera leaves’ methanolic extract suppresses cancer cells in colon (HCT116), liver (HepG2), breast (MCF-7), and erythroid (JK-1) cell lines. By applying GC/MS, we were able to determine the components of the J. procera extract that might contribute to cytotoxicity. Molecular docking modules were created that used active components against cyclin-dependent kinase 5 (Cdk5) in colon cancer, aromatase cytochrome P450 in the breast cancer receptor protein, the -N terminal domain in the erythroid cancer receptor of the erythroid spectrin, and topoisomerase in liver cancer. The results demonstrate that, out of the 12 bioactive compounds generated by GC/MS analysis, the active ingredient 2-imino-6-nitro-2H-1-benzopyran-3-carbothiamide proved to be the best-docked chemical with the chosen proteins impacted by DNA conformational changes, cell membrane integrity, and proliferation in molecular docking studies. Notably, we uncovered the capacity of J. procera to induce apoptosis and inhibit cell growth in the HCT116 cell line. Collectively, our data propose that J. procera leaves’ methanolic extract has an anticancer role with the potential to guide future mechanistic studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.