Computer networks target several kinds of attacks every hour and day; they evolved to make significant risks. They pass new attacks and trends; these attacks target every open port available on the network. Several tools are designed for this purpose, such as mapping networks and vulnerabilities scanning. Recently, machine learning (ML) is a widespread technique offered to feed the Intrusion Detection System (IDS) to detect malicious network traffic. The core of ML models’ detection efficiency relies on the dataset’s quality to train the model. This research proposes a detection framework with an ML model for feeding IDS to detect network traffic anomalies. This detection model uses a dataset constructed from malicious and normal traffic. This research’s significant challenges are the extracted features used to train the ML model about various attacks to distinguish whether it is an anomaly or regular traffic. The dataset ISOT-CID network traffic part uses for the training ML model. We added some significant column features, and we approved that feature supports the ML model in the training phase. The ISOT-CID dataset traffic part contains two types of features, the first extracted from network traffic flow, and the others computed in specific interval time. We also presented a novel column feature added to the dataset and approved that it increases the detection quality. This feature is depending on the rambling packet payload length in the traffic flow. Our presented results and experiment produced by this research are significant and encourage other researchers and us to expand the work as future work.
In the dynamic and ever-evolving realm of network security, the ability to accurately identify and classify portscan attacks both inside and outside networks is of paramount importance. This study delves into the underexplored potential of fusing graph theory with machine learning models to elevate their anomaly detection capabilities in the context of industrial Internet of things (IIoT) network data analysis. We employed a comprehensive experimental approach, encompassing data preprocessing, visualization, feature analysis, and machine learning model comparison, to assess the efficacy of graph theory representation in improving classification accuracy. More specifically, we converted network traffic data into a graph-based representation, where nodes represent devices and edges represent communication instances. We then incorporated these graph features into our machine learning models. Our findings reveal that incorporating graph theory into the analysis of network data results in a modest-yet-meaningful improvement in the performance of the tested machine learning models, including logistic regression, support vector machines, and K-means clustering. These results underscore the significance of graph theory representation in bolstering the discriminative capabilities of machine learning algorithms when applied to network data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.