Existing access control mechanisms are based on the concept of identity enrolment and recognition and assume that recognized identity is a synonym to ethical actions, yet statistics over the years show that the most severe security breaches are the results of trusted, identified, and legitimate users who turned into malicious insiders. Insider threat damages vary from intellectual property loss and fraud to information technology sabotage. As insider threat incidents evolve, there exist demands for a nonidentity-based authentication measure that rejects access to authorized individuals who have mal-intents of access. In this paper, we study the possibility of using the user's intention as an access control measure using the involuntary electroencephalogram reactions toward visual stimuli. We propose intent-based access control (IBAC) that detects the intentions of access based on the existence of knowledge about an intention. IBAC takes advantage of the robustness of the concealed information test to assess access risk. We use the intent and intent motivation level to compute the access risk. Based on the calculated risk and risk accepted threshold, the system makes the decision whether to grant or deny access requests. We assessed the model using experiments on 30 participants that proved the robustness of the proposed solution.
In vehicular ad hoc networks (VANets), a precise localization system is a crucial factor for several critical safety applications. The global positioning system (GPS) is commonly used to determine the vehicles’ position estimation. However, it has unwanted errors yet that can be worse in some areas, such as urban street canyons and indoor parking lots, making it inaccurate for most critical safety applications. In this work, we present a new position estimation method called cooperative vehicle localization improvement using distance information (CoVaLID), which improves GPS positions of nearby vehicles and minimize their errors through an extended Kalman filter to execute Data Fusion using GPS and distance information. Our solution also uses distance information to assess the position accuracy related to three different aspects: the number of vehicles, vehicle trajectory, and distance information error. For that purpose, we use a weighted average method to put more confidence in distance information given by neighbors closer to the target. We implement and evaluate the performance of CoVaLID using real-world data, as well as discuss the impact of different distance sensors in our proposed solution. Our results clearly show that CoVaLID is capable of reducing the GPS error by 63%, and 53% when compared to the state-of-the-art VANet location improve (VLOCI) algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.