The prevalence of extended-spectrum β-lactamase-producing Escherichia coli (ESBL-producing E. coli) has recently increased worldwide. This study aims at determining the antimicrobial susceptibility patterns of a collection of clinical E. coli urine isolates and evaluating the ESBL carriage of these isolates at phenotypic and genotypic levels. A total of 100 E. coli urine isolates were collected at a tertiary healthcare centre in Riyadh from January 2018 to March 2018. Antimicrobial susceptibility testing was carried out for all isolates. ESBL production was characterized at phenotypic and genotypic levels using double-disc synergy test and polymerase chain reaction, respectively. Detection of different ESBL variants was performed using DNA sequencing. Of 100 E. coli isolates, 67 were associated with multidrug resistance (MDR) phenotype. All isolates showed variable resistance levels to all antibiotics used here expect to imipenem, where they were all imipenem-sensitive. 33 out of 100 E. coli isolates were positive for ESBLs by phenotypic and genotypic methods. Among all ESBL-positive E. coli isolates, the CTX-M was the most prevalent ESBL type (31/33 isolates; 93.94%). CTX-M-15 variant was detected in all isolates associated with CTX-M carriage. Multiple ESBL gene carriage was detected in 15/33 isolates (45.45%), where 11 (33.33%) isolates produced two different ESBL types while 4 isolates (12.12%) associated with carrying three different ESBL types. Our study documented the high antimicrobial resistance of ESBL-producing E. coli to many front-line antibiotics currently used to treat UTI patients, and this implies the need to continuously revise the local guidelines used for optimal empirical therapy for UTI patients. It also showed the high prevalence of ESBL carriage in E. coli urine isolates, with CTX-M-15 being the most predominant CTX-M variant.
Urosepsis is a bacteraemia infection caused by an organism previously causing an infection in the urinary tract of a patient, a diagnosis which has been classically confirmed by culture of the same species of bacteria from both blood and urine samples. Given the new insights afforded by sequencing technologies into the complicated population structures of infectious agents affecting humans, we sought to investigate urosepsis by comparing the genome sequences of blood and urine isolates of Escherichia coli from five patients with urosepsis. The results confirm the classical urosepsis hypothesis in four of the five cases, but also show the complex nature of extra-intestinal E. coli infection in the fifth case, where three distinct strains caused two distinct infections. Additionally, we show there is little to no variation in the bacterial genome as it progressed from urine to blood, and also present a minimal set of virulence genes required for bacteraemia in E. coli based on gene association. These suggest that most E. coli have the genetic propensity to cause bacteraemia.
Extraintestinal pathogenic E. coli (ExPEC) are the major aetiological agent of urinary tract infections (UTIs) in humans. The emergence of the CTX-M producing clone E. coli ST131 represents a major challenge to public health worldwide. A recent study on the metabolic potential of E. coli isolates demonstrated an association between the E. coli ST131 clone and enhanced utilisation of a panel of metabolic substrates. The studies presented here investigated the metabolic potential of ST131 and other major ExPEC ST isolates using 120 API test reagents and found that ST131 isolates demonstrated a lower metabolic activity for 5 of 120 biochemical tests in comparison to non-ST131 ExPEC isolates. Furthermore, comparative phenotypic microarray analysis showed a lack of specific metabolic profile for ST131 isolates countering the suggestion that these bacteria are metabolically fitter and therefore more successful human pathogens.
BackgroundThe antimicrobial resistance of extraintestinal pathogenic Escherichia coli (ExPEC) has progressively been reported worldwide. This resistance has been ascribed to global dissemination of a single E. coli clone, namely E. coli sequence type 131 (E. coli ST131). The main goal of this study is to determine the prevalence and molecular traits of ST131 and its subclones among E. coli clinical urine isolates in Riyadh, Saudi Arabia.MethodsSixty E. coli urine isolates, of different extended spectrum β-lactamase (ESBL) carriage, were involved in this study. Molecular characterization was carried out to determine the ST131 status, phylogenetic groups and virulence carriage of these isolates. ST131 isolates were further tested to evaluate the prevalence of different phylogenetic groups, subclones and virulence carriage.ResultsGroup B2 was the most common phylogroup from which E. coli isolates derived. Overall, 37 of 60 (61.7%) isolates belonged to ST131 clones. Of these, 19 (31.7%) isolates were from the H30 subclone, including 10 (16.7%) H30 non-Rx and 9 (15%) H30Rx. The remaining 18 (30%) ST131 isolates belonged to other non H30 subclones. H30 subclone was significantly higher in the virulence carriage in comparison to non H30 ST131 subclones.ConclusionThis study reported the prevalence and traits of clinical E. coli ST131 main subclones in Saudi Arabia. It also demonstrated the high prevalence of E. coli ST131 locally, and found different virulence genotypes and antimicrobial resistance phenotypes among ST131 subclones. In the future, preforming whole genome sequence-based studies on ST131 and its subclones is crucial to elucidate factors that drive the success of these organisms.
BackgroundE.coli ST131 is a globally disseminated clone of multi-drug resistant E. coli responsible for that vast majority of global extra-intestinal E. coli infections. Recent global genomic epidemiological studies have highlighted the highly clonal nature of this group of bacteria, however there appears to be inconsistency in some phenotypes associated with the clone, in particular capsule types as determined by K-antigen testing both biochemically and by PCR.ResultsWe performed improved quality assemblies on ten ST131 genomes previously sequenced by our group and compared them to a new reference genome sequence JJ1886 to identify the capsule loci across the drug-resistant clone H30Rx. Our data shows considerable genetic diversity within the capsule locus of H30Rx clone strains which is mirrored by classical K antigen testing. The varying capsule locus types appear to be randomly distributed across the H30Rx phylogeny suggesting multiple recombination events at this locus, but that this capsule heterogeneity has little to no effect on virulence associated phenotypes in vitro.ConclusionsOur data provides a framework for determining the capsular genetics of E. coli ST131 and further beyond to ExPEC strains, and highlights how capsular mosaicism may be an important strategy in becoming a successful globally disseminated human pathogen.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-830) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.