Discoidin Domain Receptor 2 (DDR2) is a collagen-activated receptor kinase that, together with integrins, is required for cells to respond to the extracellular matrix. Ddr2 loss-of-function mutations in humans and mice cause severe defects in skeletal growth and development. However, the cellular functions of Ddr2 in bone are not understood. Expression and lineage analysis showed selective expression of Ddr2 at early stages of bone formation in the resting zone and proliferating chondrocytes and periosteum. Consistent with these findings, Ddr2+ cells could differentiate into hypertrophic chondrocytes, osteoblasts, and osteocytes and showed a high degree of colocalization with the skeletal progenitor marker, Gli1. A conditional deletion approach showed a requirement for Ddr2 in Gli1-positive skeletal progenitors and chondrocytes but not mature osteoblasts. Furthermore, Ddr2 knockout in limb bud chondroprogenitors or purified marrow-derived skeletal progenitors inhibited chondrogenic or osteogenic differentiation, respectively. This work establishes a cell-autonomous function for Ddr2 in skeletal progenitors and cartilage and emphasizes the critical role of this collagen receptor in bone development.
Collagen signaling is critical for proper bone and tooth formation. Discoidin domain receptor 2 (DDR2) is a collagen-activated tyrosine kinase receptor shown to be essential for skeletal development. Patients with loss of function mutations in DDR2 develop spondylo-meta-epiphyseal dysplasia (SMED), a rare, autosomal recessive disorder characterized by short stature, short limbs, and craniofacial anomalies. A similar phenotype was observed in Ddr2-deficient mice, which exhibit dwarfism and defective bone formation in the axial, appendicular, and cranial skeletons. However, it is not known if Ddr2 has a role in tooth formation. We first defined the expression pattern of Ddr2 during tooth formation using Ddr2-LacZ knock-in mice. Ddr2 expression was detected in the dental follicle/sac and dental papilla mesenchyme of developing teeth and in odontoblasts and the periodontal ligament (PDL) of adults. No LacZ staining was detected in wild-type littermates. This Ddr2 expression pattern suggests a potential role in the tooth and surrounding periodontium. To uncover the function of Ddr2, we used Ddr2 slie/slie mice, which contain a spontaneous 150-kb deletion in the Ddr2 locus to produce an effective null. In comparison with wild-type littermates, Ddr2 slie/slie mice displayed disproportional tooth size (decreased root/crown ratio), delayed tooth root development, widened PDL space, and interradicular alveolar bone defects. Ddr2 slie/slie mice also had abnormal collagen content associated with upregulation of periostin levels within the PDL. The delayed root formation and periodontal abnormalities may be related to defects in RUNX2-dependent differentiation of odontoblasts and osteoblasts; RUNX2-S319-P was reduced in PDLs from Ddr2 slie/slie mice, and deletion of Ddr2 in primary cell cultures from dental pulp and PDL inhibited differentiation of cells to odontoblasts or osteoblasts, respectively. Together, our studies demonstrate odontoblast- and PDL-specific expression of Ddr2 in mature and immature teeth, as well as indicate that DDR2 signaling is important for normal tooth formation and maintenance of the surrounding periodontium.
Temporomandibular joint (TMJ) disorders are often associated with development of osteoarthritis-like changes in the mandibular condyle. Discoidin domain receptor 2 (DDR2), a collagen receptor preferentially activated by type I and III collagen found in the TMJ and other fibrocartilages, has been associated with TMJ degeneration, but its role in normal joint development has not been previously examined. Using Ddr2 LacZ-tagged mice and immunohistochemistry, we found that DDR2 is preferentially expressed and activated in the articular zone of TMJs but not knee joints. To assess the requirement for Ddr2 in TMJ development, studies were undertaken to compare wild-type and smallie ( slie) mice, which contain a spontaneous deletion in Ddr2 to produce an effective null allele. Analysis of TMJs from newborn Ddr2 mice revealed a developmental delay in condyle mineralization, as measured by micro-computed tomography and histologic analysis. In marked contrast, knee joints of Ddr2 mice were normal. Analysis of older Ddr2 mice (3 and 10 mo) revealed that the early developmental delay led to a dramatic and progressive loss of TMJ articular integrity and osteoarthritis-like changes. Mutant condyles had a rough and flattened bone surface, accompanied by a dramatic loss of bone mineral density. Mankin scores showed significantly greater degenerative changes in the TMJs of 3- and 10-mo-old Ddr2 mice as compared with wild-type controls. No DDR2-dependent degenerative changes were seen in knees. Analysis of primary cultures of TMJ articular chondrocytes from wild-type and Ddr2 mice showed defects in chondrocyte maturation and mineralization in the absence of Ddr2. These studies demonstrate that DDR2 is necessary for normal TMJ condyle development and homeostasis and that these DDR2 functions are restricted to TMJ fibrocartilage and not seen in the hyaline cartilage of the knee.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.