Microseismic technology has been proven to be a practical approach for in-situ monitoring of fracture growth during hydraulic fracture stimulations. Microseismic monitoring has rapidly evolved in acquisition methodology, data processing, and in this paper, we evaluate the progression of this technology with emphasis on their applications in Barnett shale gas reservoir. Microseismic data analysis indicates a direct proportion between microseismic moment magnitude and depth, yet no relation between microseismic activity and either injection rate or injection volume has been observed. However, large microseismic magnitudes have been recorded where hydraulic fracturing stimulation approaches a fault and therefore the geologic framework should be integrated in such programs. In addition, the geometry of fracture growth resulted by proppant interactions with naturally fractured formations follows unpredictable fashion due to redirecting the injection fluids along flow paths associated with the pre-existing fault network in the reservoir. While microseismic imaging is incredibly useful in revealing the fracture geometry and the way the fracture evolves, recently several concerns have been raised regarding the capability of microseismic data to provide the fracture dimensional parameters and the fracture mechanism that could provide detailed information for reservoir characterization.
Gold Valley is typical of intermountain basins in Death Valley National Park (DVNP), California (USA).Using water-balance calculations, a GIS-based analytical model has been developed to estimate precipitational infiltration rates from catchment-scale topographic data (elevation and slope). The calculations indicate that groundwater recharge mainly takes place at high elevations (>1,100m) during winter (average 1.78mm/yr). A resistivity survey suggests that groundwater accumulates in upstream compartmentalized reservoirs and that the groundwater flows through basin fill and fractured bedrock. This explains the relationship between the upstream precipitational infiltration in Gold Valley and the downstream spring flow in Willow Creek. To verify the ability of local recharge to support high-flux springs in DVNP, a GIS-based model was also applied to the Furnace Creek catchment. The results produced insufficient total volume of precipitational infiltration to support flow from the main high-flux springs in DVNP under current climatic conditions. This study introduces a GISbased infiltration model that can be integrated into the Death Valley regional groundwater flow model to estimate precipitational infiltration recharge. In addition, the GISbased model can efficiently estimate local precipitational infiltration in similar intermountain basins in arid regions provided that the validity of the model is verified.
Recently, the area located within the Unfinished Obelisk (UO) archeological site showed numerous seepages and accumulations of groundwater in a small pond located a few meters from the Unfinished Obelisk. The Supreme Council of Antiques sponsored integrated geological, geophysical, and hydrogeological studies to identify the possible sources of groundwater and the optimum technique to manage the groundwater flow system that may jeopardize this invaluable sculpture. The geological units and the prevailing structure have been studied in detail using Landsat imagery and field work over two consecutive seasons. The field studies indicated the development of several fault/joint systems oriented mainly ENE-WSW with clear indications of mineralization and intensive weathering effects along these fabrics. Several resistivity (vertical seismic profile and resistivity imaging) measurements extending down to at least 20 m depth and Radar imaging down to 10 m depth are gathered to investigate the extension of outcrop units and the dominant structures prevailing the near subsurface. Geophysical data indicated the development of at least three hydrostratigraphic units arranged from top to bottom as valley fill, fractured/weathered granite, and slightly fractured to massive granitic unit. In addition, the major faults mapped by resistivity images helped to locate several observation wells and a production well to test the transmissivity across the groundwater system. The results of a pumping test indicated very low aquifer conductivity and the development of an aquitard with preferential vertical flow at the study area. This enforces a local interference through a shallow underground drainage system with sump and pump to maintain low groundwater level at the UO-archeological site.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.