Social networks are represented using graph theory. In this case, individuals in a social network are assumed as nodes. Sometimes institutions or groups are also assumed as nodes. Institutions and such groups are assumed as cluster nodes that contain individuals or simple nodes. Hypergraphs have hyperedges that include more than one node. In this study, cluster hypergraphs are introduced to generalize the concept of hypergraphs, where cluster nodes are allowed. Sometimes competitions in the real world are done as groups. Cluster hypergraphs are used to represent such kinds of competitions. Competition cluster hypergraphs of semidirected graphs (a special type of mixed graphs called semidirected graphs, where the directed and undirected edges both are allowed) are introduced, and related properties are discussed. To define competition cluster hypergraphs, a few properties of semidirected graphs are established. Some associated terms on semidirected graphs are studied. At last, a numerical application is illustrated.
Competition graph is a graph which constitutes from a directed graph (digraph) with an edge between two vertices if they have some common preys in the digraph. Moreover, Fuzzy competition graph (briefly, FCG) is the higher extension of the crisp competition graph by assigning fuzzy value to each vertex and edge. Also, Interval-valued FCG (briefly, IVFCG) is another higher extension of fuzzy competition graph by taking each fuzzy value as a sub-interval of the interval [ 0 , 1 ] . This graph arises in many real world systems; one of them is discussed as follows: Each and every species in nature basically needs ecological balance to survive. The existing species depends on one another for food. If there happens any extinction of any species, there must be a crisis of food among those species which depend on that extinct species. The height of food crisis among those species varies according to their ecological status, environment and encompassing atmosphere. So, the prey to prey relationship among the species cannot be assessed exactly. Therefore, the assessment of competition of species is vague or shadowy. Motivated from this idea, in this paper IVFCG is introduced and several properties of IVFCG and its two variants interval-valued fuzzy k-competition graphs (briefly, IVFKCG) and interval-valued fuzzy m-step competition graphs (briefly, IVFMCG) are presented. The work is helpful to assess the strength of competition among competitors in the field of competitive network system. Furthermore, homomorphic and isomorphic properties of IVFCG are also discussed. Finally, an appropriate application of IVFCG in the competition among the production companies in market is presented to highlight the relevance of IVFCG.
The different distance-based parameters are used to study the problems in various fields of computer science and chemistry such as pattern recognition, image processing, integer programming, navigation, drug discovery, and formation of different chemical compounds. In particular, distance among the nodes (vertices) of the networks plays a supreme role to study structural properties of networks such as connectivity, robustness, completeness, complexity, and clustering. Metric dimension is used to find the locations of machines with respect to minimum utilization of time, lesser number of the utilized nodes as places of the objects, and shortest distance among destinations. In this paper, lower bound of local fractional metric dimension for the connected networks is improved from unity and expressed in terms of ratio obtained by the cardinalities of the under-study network and the local resolving neighbourhood with maximum order for some edges of network. In the same context, the LFMDs of prism-related networks such as circular diagonal ladder, antiprism, triangular winged prism, and sun flower networks are computed with the help of obtained criteria. At the end, the bounded- and unboundedness of the obtained results is also shown numerically.
Gutman and Trinajstić (1972) defined the connection-number based Zagreb indices, where connection number is degree of a vertex at distance two, in order to find the electron energy of alternant hydrocarbons. These indices remain symmetric for the isomorphic (molecular) networks. For the prediction of physicochemical and symmetrical properties of octane isomers, these indices are restudied in 2018. In this paper, first and second Zagreb connection coindices are defined and obtained in the form of upper bounds for the resultant networks in the terms of different indices of their factor networks, where resultant networks are obtained from two networks by the product-related operations, such as cartesian, corona, and lexicographic. For the molecular networks linear polynomial chain, carbon nanotube, alkane, cycloalkane, fence, and closed fence, first and second Zagreb connection coindices are computed in the consequence of the obtained results. An analysis of Zagreb connection indices and coindices on the aforesaid molecular networks is also included with the help of their numerical values and graphical presentations that shows the symmetric behaviour of these indices and coindices with in certain intervals of order and size of the under study (molecular) networks.
The prime objective of this article is to explore the entropy analysis of third-order nanofluid fluid slip flow caused by a stretchable sheet implanted in a porous plate along with thermal radiation, convective surface boundary, non-Fourier heat flux applications, and nanoparticle concentration on zero mass flux conditions. The governing physical systems are modified into non-linear ordinary systems with the aid of similarity variables, and the outcomes are solved by a homotopy analysis scheme. The impression of certain governing flow parameters on the nanoparticle concentration, temperature, and velocity is illustrated through graphs, while the alteration of many valuable engineering parameters viz. the Nusselt number and Sherwood number are depicted in graphs. Entropy generation with various parameters is obtained and discussed in detail. The estimation of entropy generation using the Bejan number find robust application in power engineering and aeronautical propulsion to forecast the smartness of entire system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.