Hypothyroidism induces cognitive impairment in experimental animals and patients. Clinical reports are conflicting about the ability of thyroid hormone replacement therapy to fully restore the hypothyroidism-induced learning and memory impairment. In this study, we investigated the effects of L-thyroxin (thyroxin) treatment on hippocampus-dependent learning and memory in thyroidectomized adult rats. In the radial arm water maze (RAWM) task, thyroxin treated thyroidectomized animals made significantly fewer errors than the untreated hypothyroid animals in Trial 3 of the acquisition phase, short-term memory and long-term memory tests. In addition, the number of errors made by the thyroxin treated thyroidectomized animals was not different from that of the control group. Furthermore, the days-to-criterion (DTC) values for thyroxin treated thyroidectomized animals were not different from those of the control group but significantly lower than those of the untreated hypothyroid animals. In anesthetized rats, extracellular recording from hippocampal area CA1 of hypothyroid rats shows that thyroxin treatment restores impaired Late-phase long-term potentiation (L-LTP). Immunoblot analysis of signaling molecules, including cyclic-AMP response element binding protein (CREB), mitogen-activated protein kinases (MAPKp44/42; ERK1/2), in area CA1 revealed that thyroxin treatment reversed hypothyroidism-induced reduction of signaling molecules essential for learning and memory, and L-LTP. This study shows that thyroxin treatment reverses hypothyroidism-induced impairment of hippocampus-dependent cognition, and L-LTP, probably by restoring the levels of signaling molecule important for these processes.
Hepatocellular carcinoma accounts for about 80–90% of all liver cancer and is the fourth most common cause of cancer mortality. Although there are many strategies for the treatment of liver cancer, chemoprevention seems to be the best strategy for lowering the incidence of this disease. Therefore, this study has been initiated to investigate whether thymoquinone (TQ), Nigella sativa derived-compound with strong antioxidant properties, supplementation could prevent initiation of hepatocarcinogenesis-induced by diethylnitrosamine (DENA), a potent initiator and hepatocarcinogen, in rats. Male Wistar albino rats were divided into four groups. Rats of Group 1 received a single intraperitoneal (I.P.) injection of normal saline. Animals in Group 2 were given TQ (4 mg/kg/day) in drinking water for 7 consecutive days. Rats of Group 3 were injected with a single dose of DENA (200 mg/kg, I.P.). Animals in Group 4 were received TQ and DENA. DENA significantly increased alanine transaminase (ALT), alkaline phosphatase (ALP), total bilirubin, thiobarbituric acid reactive substances (TBARS) and total nitrate/nitrite (NOx) and decreased reduced glutathione (GSH), glutathione peroxidase (GSHPx), glutathione-s-transferase (GST) and catalase (CAT) activity in liver tissues. Moreover, DENA decreased gene expression of GSHPx, GST and CAT and caused severe histopathological lesions in liver tissue. Interestingly, TQ supplementation completely reversed the biochemical and histopathological changes induced by DENA to the control values. In conclusion, data from this study suggest that: (1) decreased mRNA expression of GSHPx, CAT and GST during DENA-induced initiation of hepatic carcinogenesis, (2) TQ supplementation prevents the development of DENA-induced initiation of liver cancer by decreasing oxidative stress and preserving both the activity and mRNA expression of antioxidant enzymes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.