Ubiquitous healthcare (U-healthcare) systems are expected to offer flexible and resilient high-end technological solutions enabling remote monitoring of patients health status in realtime and provisioning of feedback and remote actions by healthcare providers. In this paper, we present a 6LowPAN based U-healthcare platform that contributes to the realization of the above expectation. The proposed system comprises two sensor nodes sending temperature data and ECG signals to a remote processing unit. These sensors are being assigned an IPv6 address to enable the Internet-of-Things (IoT) functionality. A 6LowPAN-enabled edge router, connected to a PC, is serving as a base station through a serial interface, to collect data from the sensor nodes. Furthermore, a program interfacing through a Serial-Line-Internet-Protocol (SLIP) and running on the PC provides a network interface that receives IPv6 packets from the edge router. The above system is enhanced by having the application save readings from the sensors into a file that can be downloaded by a remote server using a free Cloud service such as UbuntuOne. This enhancement makes the system robust against data loss especially for outdoor healthcare services, where the 3G/4G connectivity may get lost because of signal quality fluctuations. The system provided a proof of concept of successful remote U-healthcare monitoring illustrating the IoT functionality and involving 3G/4G connectivity while being enhanced by a cloud-based backup.
The aim of this paper is to evaluate the throughput performance of IEEE802.11n WLANs using a well-known commercial simulator called OPNET Modeler. We study the effects of IP packet size, Modulation and Coding Scheme (MCS), Channel Bonding, number of MIMO spatial streams, Block Acknowledgement (BA) and Type of Service (ToS)/Access Category (AC) on maximum throughput and Throughput Efficiency (TE). The impact of multiple users' access on TE is also analyzed. From these studies we offer fresh insights on underlying configurations and operating conditions which affect the peak throughput performance and efficiency of IEEE802.11n system.
Cellular networks are undergoing transformation from conventional homogeneous macro Base Stations (BSs) to Heterogeneous Network (HetNet). This new paradigm not only offers a significant improvement in the overall network capacity or user data rate; it also promises an improvement in the overall network Energy Efficiency (EE). In this study, a theoretical model for evaluating the EE in HetNet is developed. A HetNet generally consists of different types of Base Stations (BSs) which operate in harmony towards a set of common goals defined by the network operator such as coverage and capacity improvement. Each BS may differ in terms of transmit power, achievable data rate, coverage, BS density and EE, under different network deployment scenarios. The results show that the picocell strongly impacts the Energy Efficiency (EE) of the HetNet as compared to microcell. More specifically it is observed that certain ratios of microcells and picocells per macro BS will result in sub-optimal of Area Energy Efficiency (AEE). It is shown that the AEE of HetNet also increases as the percentage area of macro BS overlaid by smaller cells and the density of micro/picocells increases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.