Background: The rising circulation of the monkeypox virus while the COVID-19 is still ongoing in non-endemic countries is a significant global health threat. In this article, we have discussed the epidemiology, aetiology, and pathogenesis of the monkeypox virus to provide our current knowledge of the disease. Also, we discussed the ongoing efforts of the international health organizations to curtail the present epidemic and we finally provide recommendations for early detection and response. Methods: We did a rapid literature search on PubMed, EMBASE, World Health Organization (WHO), the Centers for Disease Control and Prevention (CDC), and other trusted databases for recent articles (1958-2022) published in English—focusing on the outbreaks of monkeypox disease, epidemiology, pathogenesis, aetiology, prevention, and control in endemic and non-endemic countries. Keywords such as "Monkeypox", "Monkeypox virus", "Poxviridae", "Orthopoxvirus", "Smallpox", and "Smallpox Vaccine" were considered in our search based on MESH medical subject headings. Results: Our review highlights four important findings. First, a cumulative of 1285 monkeypox cases have been documented and reported by the WHO in non-endemic countries as of June 8, 2022. Second, international travel contributes to the increase in cases in non-endemic countries. Third, the origin of the outbreak, the pattern of transmission, and the risk of infections is not fully understood. Fourth, there is an ongoing effort by the WHO, CDC, and other international health organization to control the spread of the monkeypox disease. Conclusion: Our findings underline the need to reassess research priorities on the origin, transmission pattern, and risk factors for infection of monkeypox. Also, we provide recommendations under the One Health spectrum to prevent further spread of the disease.
The rise of globalization and industrialization has driven the demand for rare earth metals (REMs). These metals are widely used in various sectors of the global economy with various applications in medicine, renewable energy, electronics, agriculture, and the military. REMs are likely to remain an important part of our global future, and, as production increases, areas contaminated by REMs are expected to expand over the coming decades. Thus, triggering significant adverse environmental, animal, and human health impacts. Despite increased attention on REMs outside China in recent years, there are limited studies exploring REM production, deposits, and associated health impacts in the African context. Proper mine management, adequate safety protocols, sustainable processing methods, and waste handling systems have been identified and proposed globally; however, the nature and scale of implementing these management protocols on the African continent have been less clear. Therefore, planetary health-centered solutions are urgently needed to be undertaken by researchers, policy makers, and non-governmental actors in Africa and across the globe. This is with the overarching aim of ensuring eco-friendly alternatives and public health consciousness on REM exploitations and hazards for future generations to come.
Arbovirus control depends on accurate projections of likely changes in the arthropod vector species, essential to inform local and global public health authorities. According to the WHO Assembly and the Global Vector Control Response (GVCR), by 2030, the burden of vector-borne diseases, particularly arbovirus infections, is expected to be greatly decreased. However, anthropogenic drivers, including climate change, insecticide resistance, and a lack of operational local databases for risk management of emerging and re-emerging arboviruses, hinders effective implementation plans. This article presents a statistical, mechanistic, integrated surveillance, thermal biology, and holistic framework (termed SMITH) to discuss how temperature variations affect the biological transmission, replication, extrinsic incubation period, nutritional behavior, distribution, and survival (TRENDS) of arboviruses. Future transdisciplinary research that involves knowledge translation between local and global communities is required for early detection and risk management of the growing threat posed by arboviruses for human, animal, and planetary health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.