Chitin ranks next to cellulose as the most important bio-polysaccharide which can primarily be extracted from crustacean shells. However, the emergence of new areas of the application of chitin and its derivatives are on the increase and there is growing demand for new chitin sources. In this study, therefore, an attempt was made to extract chitin from the house cricket (Brachytrupes portentosus) by a chemical method. The physicochemical properties of chitin and chitosan extracted from crickets were compared with commercial chitin and chitosan extracted from shrimps, in terms of proximate analysis in particular, of their ash and moisture content. Also, infrared spectroscopy, x-ray diffraction (XRD), scanning electron microscopy and elemental analysis were conducted. The chitin and chitosan yield of the house cricket ranges over 4.3%-7.1% and 2.4%-5.8% respectively. Chitin and chitosan from crickets compares favourably with those extracted from shrimps, and were found to exhibit some similarities. The result shows that cricket and shrimp chitin and chitosan have the same degree of acetylation and degree of deacetylation of 108.1% and 80.5% respectively, following Fourier transform infrared spectroscopy. The characteristic XRD strong/sharp peaks of 9.4 and 19.4° for α-chitin are common for both cricket and shrimp chitin. The percentage ash content of chitin and chitosan extracted from B. portentosus is 1%, which is lower than that obtained from shrimp products. Therefore, cricket chitin and chitosan can be said to be of better quality and of purer form than commercially produced chitin and chitosan from shrimp. Based on the quality of the product, chitin and chitosan isolated from B. portentosus can replace commercial chitin and chitosan in terms of utilization and applications. Therefore, B. portentosus is a promising alternative source of chitin and chitosan.
Exceptional ecological niche diversity, clear waters and unique divergent selection pressures have often been invoked to explain high morphological and genetic diversity of taxa within ancient lakes. However, it is possible that in some ancient lake taxa high diversity has arisen because these historically stable environments have allowed accumulation of lineages over evolutionary timescales, a process impossible in neighbouring aquatic habitats undergoing desiccation and reflooding. Here we examined the evolution of a unique morphologically diverse assemblage of thiarid gastropods belonging to the Melanoides polymorpha'complex' in Lake Malawi. Using mitochondrial DNA sequences, we found this Lake Malawi complex was not monophyletic, instead sharing common ancestry with Melanoides anomala and Melanoides mweruensis from the Congo Basin. Fossil calibrations of molecular divergence placed the origins of this complex to within the last 4 million years. Nuclear amplified fragment length polymorphism markers revealed sympatric M. polymorpha morphs to be strongly genetically differentiated lineages, and males were absent from our samples indicating that reproduction is predominantly parthenogenetic. These results imply the presence of Lake Malawi as a standing water body over the last million years or more has facilitated accumulation of clonal morphological diversity, a process that has not taken place in more transient freshwater habitats. As such, the historical stability of aquatic environments may have been critical in determining present spatial distributions of biodiversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.