Peripheral blood cultures were exposed to various doses (5 to 500 mg/L) of boron compounds. Sister-chromatid exchange, micronucleus and chromosomal aberration tests were applied to estimate the DNA damage, and biochemical parameters (superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, glucose-6-phosphate dehydrogenase, total glutathione, malondialdehyde and total antioxidant capacity) were examined to determine oxidative stress. According to our findings, various boron compounds at low doses were useful in supporting antioxidant enzyme activities in human blood cultures. It was found that the boron compounds do not have genotoxic effects even in the highest concentrations, though in increasing doses they constitute oxidative stress. It is concluded that the tested boron compounds can be used safely, but it is necessary to consider the tissue damages which are likely to appear depending on the oxidative stress.
Introduction: Oxidative stress may contribute to the pathogenesis of periodontitis. However, the detailed molecular mechanism remains unclear. Both 8-hydroxydeoxyguanosine (8-OHdG) and mitochondrial DNA (mtDNA) deletion have been reported as early oxidative DNA damage markers. In this study, 8-OHdG levels in saliva and mtDNA deletions in gingival tissue of patients with chronic periodontitis (CP) were evaluated. Materials and Methods: Gingival tissue and whole saliva samples were collected from 32 patients with CP and 32 healthy control subjects. To determine the clinical condition of each subject, the plaque index, gingival index, clinical attachment level (CAL), and probing depth (PD) were measured. Using the ELISA and polymerase chain reaction methods, the salivary 8-OHdG levels and the 7.4-kbp and 5-kbp mtDNA deletions were examined. Results: The 5-kbp mtDNA deletion was detected in 20 of the 32 periodontitis patients (62.5%), but was not detected in the healthy controls. The mean value of 8-OHdG in the saliva of the periodontitis patients with deleted mtDNA was significantly higher than in the patients with non-deleted mtDNA (p<0.01). Also, significant correlation was found between the occurrence of the 5-kbp mtDNA deletion and salivary 8-OHdG levels (p<0.01). Similar correlations were detected between salivary 8-OHdG levels and age, PD, and CAL (p<0.01, p<0.05). Conclusion: Increased oxidative stress may lead to premature oxidative DNA damage in the gingival tissue of periodontitis patients and the salivary 8-OHdG level may signify premature oxidative mtDNA damage in diseased gingival tissue.
Paclitaxel (PAC) and cisplatin (CIS) are two established chemotherapeutic drugs used in combination for the treatment of various solid tumors. However, the usage of PAC and CIS are limited because of the incidence of their moderate or severe neurotoxic side effects. In this study, we aimed to assess the protective role of salicylic acid (SA) against neurotoxicity caused by PAC and CIS. For this purpose, newborn Sprague Dawley rats were decapitated in sterile atmosphere and primary cortex neuron cultures were established. On the 10th day SA was added into culture plates. PAC and CIS were added on the 12th day. The cytotoxicity was determined by using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. Oxidative alterations were assessed using total antioxidant capacity and total oxidative stress assays in rat primary neuron cell cultures. It was shown that both concentrations of PAC and CIS treatments caused neurotoxicity. Although SA decreased the neurotoxicity by CIS and PAC, it was more effective against the toxicity caused by CIS rather than the toxicity caused by PAC. In conclusion it was clearly revealed that SA decreased the neurotoxic effect of CIS and PAC in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.