This paper describes the application of adaptive neuro-fuzzy inference system (ANFIS) model for classification of liver tumor as benign or malignant by analyzing CT liver images. Decision making was performed in four stages: in the first stage, image is enhanced to improve its quality. In the second stage, the liver is extracted based on thresholding and boundary extraction algorithms. Then it is given as input to Fuzzy C-mean (FCM) clustering algorithm to segment it's inside tumor object. In the third stage, texture features and Discrete Wavelet Transformation features are extracted. In the fourth stage, the ANFIS classifier is trained by these extracted features using the backpropagation gradient descent method in combination with the least squares method. To evaluate the effect of each type of features on the tumor classification process, these two sets of features are trained separately to take the right decision to classify the liver tumor as malignant or benign. The performance of the proposed approach was tested and evaluated using a group of patient's CT images and the experimental results confirmed that the proposed approach has potential in identifying the tumor type.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.