One of the largest operators in the Sultanate of Oman discovered a clastic reservoir field in 1980 and put it on production in 1985. The field produces viscous oil, ranging from 200 - 2000+ cP at reservoir conditions. Over 75% of the wells drilled are horizontal wells and the field is one of the largest producers in the Sultanate of Oman. The field challenges include strong aquifer, high permeability zones/faults and large fluid mobility contrast have resulted that most of the wells started with very high-water cuts. The current field water cut is over 94%. This paper details operator's meticulous journey in qualification, field trials followed by field-wide implementation and performance evaluation of Autonomous Inflow Control Valve (AICV) technology in reducing water production and increasing oil production significantly. AICV can precisely identify the fluid flowing through it and shutting-off the high water or gas saturated zones autonomously while stimulating oil production from healthy oil-saturated zones. Like other AICDs (Autonomous Inflow Control Device) AICV can differentiate the fluid flowing through it via fluid properties such as viscosity and density at reservoir conditions. However, AICVs performance is superior due to its advanced design based on Hagen-Poiseuille and Bernoulli's principles. This paper describes an AICV completion design workflow involving a multi-disciplinary team as well as some of the field evaluation criteria to evaluate AICV well performance in the existing and in the new wells. The operator has completed several dozens of production wells with AICV technology in the field since 2018-19. Based on the field performance review, it has shown the benefit of accelerating oil production as well as reduction of unwanted water which not only reduces the OPEX of these wells but at the same time enormous positive impact on the environment. Many AICV wells started with just 25-40 % water cut and are still producing with low water cut and higher oil production. Based on the initial field-wide assessment, it is also envisaged that AICV wells will assist in achieving higher field recovery. Also, AICV helped in mitigating the facility constraints of handling produced water which will allow the operator continued to drill in-fill horizontal wells. Finally, the paper also discusses in detail the long-term performance results of some of the wells and their impact on cumulative field recovery as well as lessons learned to further optimise the well performance. The technology has a profound impact on improved sweep efficiency and as well plays an instrumental role in reducing the carbon footprint by reducing the significant water production at the surface. It is concluded that AICV technology has extended the field and wells life and proved to be the most cost-effective field-proven technology for the water shut-off application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.