The mutation rate and evolution of RNA viruses correlate with viral adaptation. While most mutations do not make significant contributions to viral molecular evolution, some are naturally selected and produce variants through positive selection.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a genome comprised of a ~30K nucleotides non-segmented, positive single-stranded RNA. Although its RNA-dependent RNA polymerase exhibits exonuclease proofreading activity, viral sequence diversity can be induced by replication errors and host factors. These variations can be observed in the population of viral sequences isolated from infected host cells and are not necessarily reflected in the genome of transmitted founder viruses. We profiled intra-sample genetic diversity of SARS-CoV-2 variants using 15,289 high-throughput sequencing datasets from infected individuals and infected cell lines. Most of the genetic variations observed, including C->U and G->U, were consistent with errors due to heat-induced DNA damage during sample processing, and/or sequencing protocols. Despite high mutational background, we confidently identified intra-variable positions recurrent in the samples analyzed, including several positions at the end of the gene encoding the viral S protein. Notably, most of the samples possesses a C->A missense mutation resulting in the S protein lacking the last 20 amino acids (SΔ20). Here we demonstrate that SΔ20 exhibits increased cell-to-cell fusion and syncytia formations. Our findings are suggestive of the consistent emergence of high-frequency viral quasispecies that are not horizontally transmitted but involved in intra-host infection and spread.Author summaryThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its associated disease, COVID-19, has caused significant worldwide mortality and unprecedented economic burden. Here we studied the intra-host genetic diversity of SARS-CoV-2 genomes and identified a high-frequency and recurrent non-sense mutation yielding a truncated form of the viral spike protein, in both human COVID-19 samples and in cell culture experiments. Through the use of a functional assay, we observed that this truncated spike protein displays an elevated fusogenic potential and forms syncytia. Given the high frequency at which this mutation independently arises across various samples, it can be hypothesized that this deletion mutation provides a selective advantage to viral replication and may also have a role in pathogenesis in humans.
Existing pharmacotherapies acting on the opioid receptor system have been extensively used to treat chronic pain and addictive disorders. Nevertheless, the adverse side effects associated with opioid therapy underscore the need for concerted measures to develop safer analgesics. A promising avenue of research stems from the characterization of a sodium-dependent allosteric regulation site housed within the delta-opioid receptor and several other G protein-coupled receptors (GPCRs), thereby revealing the presence of a cluster of sodium and water molecules lodged in a cavity thought to be present only in the inactive conformation of the receptor. Studies into the structure–function relationship of said pocket demonstrated its critical involvement in the functional control of GPCR signaling. While the sodium pocket has been proposed to be present in the majority of class A GPCRs, the shape of this allosteric cavity appears to have significant structural variation among crystallographically solved GPCRs, making this site optimal for the design of new allosteric modulators that will be selective for opioid receptors. The size of the sodium pocket supports the accommodation of small molecules, and it has been speculated that promiscuous amiloride and 5′-substituted amiloride-related derivatives could target this cavity within many GPCRs, including opioid receptors. Using pharmacological approaches, we have described the selectivities of 5′-substituted amiloride-related derivatives, as well as the hitherto undescribed activity of the NHE1 inhibitor zoniporide toward class A GPCRs. Our investigations into the structural features of the delta-opioid receptor and its ensuing signaling activities suggest a bitopic mode of overlapping interactions involving the orthosteric site and the juxtaposed Na + pocket, but only at the active or partially active opioid receptor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.