Optical camera communication is an emerging technology that enables communication using light beams, where information is modulated through optical transmissions from light-emitting diodes (LEDs). This work conducts empirical studies to identify the feasibility and effectiveness of using deep learning models to improve signal reception in camera communication. The key contributions of this work include the investigation of transfer learning and customization of existing models to demodulate the signals transmitted using a single LED by applying the classification models on the camera frames at the receiver. In addition to investigating deep learning methods for demodulating a single VLC transmission, this work evaluates two real-world use-cases for the integration of deep learning in visual multiple-input multiple-output (MIMO), where transmissions from a LED array are decoded on a camera receiver. This paper presents the empirical evaluation of state-of-the-art deep neural network (DNN) architectures that are traditionally used for computer vision applications for camera communication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.