In this study, 4-[5-aryl-3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazol-1-yl] benzenesulfonamides were synthesized, and inhibition effects on AChE, hCA I, and hCA II were evaluated. K values of the compounds toward hCA I were in the range of 24.2 ± 4.6-49.8 ± 12.8 nm, while they were in the range of 37.3 ± 9.0-65.3 ± 16.7 nm toward hCA II. K values of the acetazolamide were 282.1 ± 19.7 nm and 103.60 ± 27.6 nm toward both isoenzymes, respectively. The compounds inhibited AChE with K in the range of 22.7 ± 10.3-109.1 ± 27.0 nm, whereas the tacrine had K value of 66.5 ± 13.8 nm. Electronic structure calculations at M06-L/6-31 + G(d,p)//AM1 level and molecular docking studies were also performed to enlighten inhibition mechanism and to support experimental findings. Results obtained from calculations of molecular properties showed that the compounds obey drug-likeness properties. The experimental and computational findings obtained in this study might be useful in the design of novel inhibitors against hCA I, hCA II, and AChE.
In this study, a novel series of phenyl substituted imidazo[2,1-b][1,3,4]thiadiazole derivatives were synthesized, characterized and explored for antibacterial activity against Gram-negative Escherichia coli, Gram-positive Staphylococcus aureus and Bacillus subtilis and antifungal activity against Candida albicans. Most of the synthesized compounds exhibited remarkable antimicrobial activities, some of which being ten times more potent than positive controls. The most promising compound showed excellent activity with MIC value of 0.03 μg/ml against both S. aureus and B. subtilis (MIC values of positive compound Chloramphenicol are 0.4 μg/ml and 0.85 μg/ml, respectively). Furthermore, structure-activity relationship was also investigated with the help of computational tools. Some physicochemical and ADME properties of the compounds were calculated too. The combination of electronic structure calculations performed at PM6 level and molecular docking simulations using Glide extra-precision mode showed that the hydrophobic nature of keto aryl ring with no electron withdrawing substituents at para position enhances activity while electron-donating substituents at the second aryl ring is detrimental to activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.