International audienceA hybrid plasma-catalytic system was used in for the hydrogenation of carbon dioxide (CO2) into methane (methanation) at atmospheric pressure and very low temperature using a dielectric barrier discharge (DBD) plasma reactor packed with Ni-CexZr1−xO2 catalysts. Three catalysts were prepared by a conventional wet impregnation method, using 15 wt% of Ni loading over ceria-zirconia mixed oxides having different Ce/Zr ratios. The physico–chemical features of both catalysts and supports were evaluated by means of X-Ray Diffraction (XRD), Temperature-Programmed Reduction of H2 (H2-TPR), Temperature Programmed-Desorption of CO2 (CO2-TPD) and Transmission Electron Microscopy (TEM). The methanation experiments in the absence or in the presence of plasma were carried out in the temperature range of 90–420 °C. The hybrid plasma 15NiCZ5842 catalyst combination was found to efficiently convert CO2 into methane even at low temperature. Indeed, CO2 conversions as high as 80%, together with 100% selectivity toward methane was measured in the presence of plasma at 90 °C. On the contrary in the absence of plasma, the same conversion and selectivity were only achieved at much higher temperatures around 300 °C, for the same catalyst
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.