Fuzzy Inference Systems (FIS) has often been used to evaluate performance using few input variables as a result of fear for rules explosion. This problem is solved using Hierarchical Fuzzy Inference System (HFIS); a divide-andconquer approach that drastically reduce the number of rules at the same time preserved the fuzzy logic reasoning. As a result, this study explore the potential of this tool in details by applying it to evaluate students' exam records. The proposed model is compared to classical one and results show that HFIS is more promising from the perspective of simplicity and precision. However, for optimum results, the study suggests training FIS with neural networks and emerging optimization algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.