Characterization of ceramide-effector(s), which includes protein phosphatase 2A (PP2A) is an important prelude to understanding the molecular basis of sphingolipid-mediated biological effects such as cell growth, differentiation and apoptosis. Recently, the existence of a metal-dependent form of PP2A has been reported (Cai et al., 1995). In this study, we investigated the effects of metal ions and chelators on ceramide-activated PP2A (CAPP). Our study demonstrates that at 0.5 mM concentration, Mg 2+ appears to have no significant effect on either basal or ceramide-stimulated phosphatase activities, whereas Ca 2+ stimulated the basal phosphatase activity, but was inhibitory towards CAPP. Moreover, the divalent cations Cr 2+ , Mn 2+ , Fe 2+ , Ni 2+ , Cu 2+ and Zn 2+ were tested and all were found to be inhibitory towards both CAPP and basal phosphatase activities. By contrast, Cs + and Li + had almost no effect on CAPP, although both stimulated basal phosphatase activity. The effects of EDTA and EGTA were tested and it was observed that EDTA decreased CAPP activity in a dose-dependent fashion, but had no effect upon basal phosphatase activity. These results suggest that CAPP is a metal-dependent protein, but, because Ca 2+ inhibitied CAPP and EGTA was much less potent than EDTA in inhibiting CAPP, Ca 2+ is unlikely to be its metal cofactor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.