The electronic spectra of Co(+)(H(2)O), Co(+)(HOD), and Co(+)(D(2)O) have been measured from 13,500 to 18,400 cm(-1) using photodissociation spectroscopy. Transitions to four excited electronic states with vibrational and partially resolved rotational structure are observed. Each electronic transition has an extended progression in the metal-ligand stretch, v(3), and the absolute vibrational quantum numbering is assigned by comparing isotopic shifts between Co(+)(H(2)(16)O) and Co(+)(H(2)(18)O). For the low-lying excited electronic states, the first observed transition is to v(3)' = 1. This allows the Co(+)-(H(2)O) binding energy to be determined as D(0)(0 K)(Co(+)-H(2)O) = 13730 ± 90 cm(-1) (164.2 ± 1.1 kJ/mol). The photodissociation spectrum shows a well-resolved K(a) band structure due to rotation about the Co-O axis. This permits determination of the spin rotation constants ε(aa)" = -6 cm(-1) and ε(aa)' = 4 cm(-1). However, the K(a) rotational structure depends on v(3)'. These perturbations in the spectrum make the rotational constants unreliable. From the nuclear spin statistics of the rotational structure, the ground state is assigned as (3)B(1). The electronic transitions observed are from the Co(+)(H(2)O) ground state, which correlates to the cobalt ion's (3)F, 3d(8) ground state, to excited states which correlate to the (3)F, 3d(7)4s and (3)P, 3d(8) excited states of Co(+). These excited states of Co(+) interact less strongly with water than the ground state. As a result, the excited states are less tightly bound and have longer metal-ligand bonds. Calculations at the CCSD(T)/aug-cc-pVTZ level also predict that binding to Co(+) increases the H-O-H angle in water from 104.1° to 106.8°, as the metal removes electron density from the oxygen lone pairs. The O-H stretching frequencies of the ground electronic state of Co(+)(H(2)O) and Co(+)(HOD) have been measured by combining IR excitation with visible photodissociation in a double resonance experiment. In Co(+)(H(2)O) the O-H symmetric stretch is ν(1)" = 3609.7 ± 1 cm(-1). The antisymmetric stretch is ν(5)" = 3679.5 ± 2 cm(-1). These values are 47 and 76 cm(-1), respectively, lower than those in bare H(2)O. In Co(+)(HOD) the O-H stretch is observed at 3650 cm(-1), a red shift of 57 cm(-1) relative to bare HOD.
The electronic spectrum of Ni⁺(H₂O) has been measured from 16200 to 18000 cm⁻¹ using photofragment spectroscopy. Transitions to two excited electronic states are observed; they are sufficiently long-lived that the spectrum is vibrationally and partially rotationally resolved. An extended progression in the metal-ligand stretch is observed, and the absolute vibrational quantum numbering is assigned by comparing isotopic shifts between ⁵⁸Ni⁺(H₂O) and ⁶⁰Ni⁺(H₂O). Time-dependent density functional calculations aid in assigning the spectrum. Two electronic transitions are observed, from the ²A₁ ground state (which correlates to the ²D, 3d⁹ ground state of Ni⁺) to the 3²A₁ and 2²A₂ excited states. These states are nearly degenerate and correlate to the ²F, 3d⁸4s excited state of Ni⁺. Both transitions are quite weak, but surprisingly, the transition to the ²A₂ state is stronger, although it is symmetry-forbidden. The 3d⁸4s states of Ni⁺ interact less strongly with water than does the ground state; therefore, the excited states observed are less tightly bound and have a longer metal-ligand bond than the ground state. Calculations at the CCSD(T)/aug-cc-pVTZ level predict that binding to Ni⁺ increases the H-O-H angle in water from 104.2 to 107.5° as the metal removes electron density from the oxygen lone pairs. The photodissociation spectrum shows well-resolved rotational structure due to rotation about the Ni-O axis. This permits determination of the spin rotation constants ε(αα)'' = -12 cm⁻¹ and ε(αα)' = -3 cm⁻¹ and the excited state rotational constant A' = 14.5 cm⁻¹. This implies a H-O-H angle of 104 ± 1° in the 2²A₂ excited state. The O-H stretching frequencies of the ground state of Ni⁺(H₂O) were measured by combining IR excitation with visible photodissociation in a double resonance experiment. The O-H symmetric stretch is ν₁'' = 3616.5 cm⁻¹; the antisymmetric stretch is ν₅'' = 3688 cm⁻¹. These values are 40 and 68 cm⁻¹ lower, respectively, than those in bare H₂O.
Vibrational spectra are measured for Cu(+)(CH4)(Ar)2, Cu(+)(CH4)2(Ar), Cu(+)(CH4)n (n = 3-6), and Ag(+)(CH4)n (n = 1-6) in the C-H stretching region (2500-3100 cm(-1)) using photofragment spectroscopy. Spectra are obtained by monitoring loss of Ar or CH4. Interaction with the metal ion produces substantial red shifts in the C-H stretches of proximate hydrogens. The magnitude of the shift reflects the metal-methane distance and the coordination to the metal ion of the methane hydrogens (η(2) or η(3)). The structures of the complexes are determined by comparing the measured spectra with spectra calculated for candidate geometries using the B3LYP and CAM-B3LYP density functionals with 6-311++G(3df,3pd) and aug-cc-pVTZ-PP basis sets. Because of the d(10) electronic configuration of the metal ions, the complexes are expected to adopt symmetric structures, which is confirmed by the experiments. All of the complexes have η(2) hydrogen coordination in the first shell, in accord with theoretical predictions; second-shell ligands sometimes show η(3) hydrogen coordination. The vibrational spectrum of Cu(+)(CH4)(Ar)2 shows extensive structure due to Fermi resonance between the lowest-frequency C-H stretch and overtones of the H-C-H bends. The Cu(+)(CH4) cluster has a smaller red shift in the lowest-frequency C-H stretch than M(+)(CH4), M(+) = Co(+) (d(8)) and Ni(+) (d(9)). Although all three ions have similar binding energies, the metal-ligand electrostatic interaction is largest for Cu(+), while the contribution from covalent interactions is largest for Co(+). The larger ionic radius of Ag(+) leads to a larger metal-ligand distance and weaker interaction, resulting in substantially smaller red shifts than in the Cu(+) complexes. The Cu(+)(CH4)2 and Ag(+)(CH4)2 clusters have symmetrical structures, with the methanes on opposite sides of the metal, while Cu(+)(CH4)3 and Ag(+)(CH4)3 adopt symmetrical, trigonal planar structures with all M-C distances equal. For Cu(+)(CH4)4, the tetrahedral structure dominates the observed spectrum, although a trigonal pyramidal structure may contribute; however, only the tetrahedral structure is observed for Ag(+)(CH4)4. The structures of Cu(+)(CH4)n and Ag(+)(CH4)n differ for clusters with n > 4. For copper complexes, these are primarily formed by adding outer-shell methane ligand(s) to the tetrahedral n = 4 core. The observed spectra of the larger Ag(+) clusters are dominated by symmetrical structures in which all of the Ag-C distances are similar: Ag(+)(CH4)5 has a trigonal bipyramidal geometry and Ag(+)(CH4)6 is octahedral.
At room temperature, cobalt oxide cations directly convert methane to methanol with high selectivity but very low efficiency. Two potential intermediates of this reaction, the [HO-Co-CH(3)](+) insertion intermediate and [H(2)O-Co=CH(2)](+) aquo-carbene complex are produced in a laser ablation source and characterized by electronic and vibrational spectroscopy. Reaction of laser-ablated cobalt cations with different organic precursors seeded in a carrier gas produces the intermediates, which subsequently expand into vacuum and cool. Ions are extracted into a time-of-flight mass spectrometer and spectra are measured via photofragment spectroscopy. Photodissociation of [HO-Co-CH(3)](+) in the visible and via infrared multiple photon dissociation (IRMPD) makes only Co(+) + CH(3)OH, while photodissociation of [H(2)O-Co=CH(2)](+) produces CoCH(2)(+) + H(2)O. The electronic spectrum of [HO-Co-CH(3)](+) shows progressions in the excited state Co-C stretch (335 cm(-1)) and O-Co-C bend (90 cm(-1)); the IRMPD spectrum gives ν(OH) = 3630 cm(-1). The [HO-Co-CH(3)](+)(Ar) complex has been synthesized and its vibrational spectrum measured in the O-H stretching region. The resulting spectrum is sharper than that obtained via IRMPD and gives ν(OH) = 3642 cm(-1). Also, an improved potential energy surface for the reaction of CoO(+) with methane has been developed using single point energies calculated by the CBS-QB3 method for reactants, intermediates, transition states and products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.