Machining Rapidly Solidified aluminium (RSA) 6061, a widely used optical material by Ultra-high precision diamond turning, has enabled high accuracy and surface integrity. However, improved quality and productivity require precision surface and machining process monitoring because the duo has a great influence on machine part performance. The study presented in this paper investigates the effects of cutting parameters (i.e., depth of cut, feed rate and cutting speed) on machining output variables (surface roughness and acoustic emission potentials) during ultra-high precision diamond turning of RSA 6061. With the aid of Box-Behnken design (BBD), a response surface methodology, and the analysis of variance (ANOVA), the correlation between cutting parameters and machining output variables were analyzed and modeled. The results showed that both surface roughness and acoustic emission potentials are greatly influenced by feed rate and cutting speed. For a better-quality surface roughness and low acoustic emission during ultra-high precision diamond turning of RSA 6061, high cutting speed and low feed rates are the right combinations and vice versa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.