Proteases of Tannerella forsythia, a pathogen associated with periodontal disease, are implicated as virulence factors. Here, we characterized a matrix metalloprotease (MMP)-like enzyme of T. forsythia referred to as karilysin. Full length (without a signal peptide) recombinant karilysin (49.9 kDa) processed itself into the mature 18 kDa enzyme through a sequential autoproteolytic cleavages both at N-and C-terminal profragments. The first cleavage at the Asn14-Tyr15 peptide bond generated the fully active enzyme (47.9 kDa) and subsequent truncations at the C-termini did not affect proteolytic activity. Mutation of Tyr15 to Ala generated a prokarilysin variant that processed itself into the final 18 kDa form with greatly reduced kinetics. Inactive prokarilysin with the mutated catalytic Glu residue (E136A) was processed by active karilysin at the same sites as the active enzymes. The karilysin proteolytic activity and autoprocessing were inhibited by 1,10-phenanthroline and EDTA. Calcium ions were found to be important for both activity and thermal stability of karilysin. Using the CLiPS technology, specificity of karilysin was found to be similar to that of MMPs with preference for Leu/Tyr/Met at P1′ and Pro/Ala at P3. This specificity and the ability to degrade elastin, fibrinogen and fibronectin may contribute to the pathogenicity of periodontitis.
Tannerella forsythia is a poorly studied pathogen despite being one of the main causes of periodontitis, which is an inflammatory disease of the supporting structures of the teeth. We found that despite being recognized by all complement pathways T. forsythia is resistant to killing by human complement, which is present at up to 70% of serum concentration in gingival crevicular fluid. Incubation of human serum with karilysin, a metalloproteinase of T. forsythia, resulted in a decrease in bactericidal activity of the serum. T. forsythia strains expressing karilysin at higher levels were more resistant than low expressing strain. Furthermore, the low expressing strain was significantly more opsonized with C3b and membrane attack complex from serum compared to the other strains. The high expressing strain was more resistant to killing in human blood. The protective effect of karilysin against serum bactericidal activity was attributable to its ability to inhibit complement at several stages. The classical and lectin complement pathways were inhibited due to the efficient degradation of mannose-binding lectin, ficolin-2, ficolin-3 and C4 by karilysin, while inhibition of the terminal pathway was caused by degradation of C5. Interestingly, karilysin was able to release biologically active C5a peptide in human plasma and induce migration of neutrophils. Importantly, we detected the karilysin gene in over 90% of gingival crevicular fluid samples containing T. forsythia obtained from patients with periodontitis. Taken together, the newly characterized karilysin appears to be an important virulence factor of T. forsythia and might have several important implications for immune evasion.
Tannerella forsythia is a gram-negative bacterium strongly associated with the development and/or progression of periodontal disease. Here, we have shown that a newly characterized matrix metalloprotease-like enzyme, referred to as karilysin, efficiently cleaved the antimicrobial peptide LL-37, significantly reducing its bactericidal activity. This may contribute to the resistance of T. forsythia to the antibacterial activity of LL-37, since their vitality was found not to be affected by LL-37 at concentrations up to 2.2 µM. Furthermore, proteolysis of LL-37 by karilysin not only abolished its ability to bind lipopolysaccharide (LPS) to quench endotoxin-induced proinflammatory activity, but LL-37 cleavage also caused the release of active endotoxin from the LPS/LL-37 complex. Proteolytic inactivation of LL-37 bactericidal activity by karilysin may protect LL-37-sensitive species in the subgingival plaque and maintain the local inflammatory reaction driven by LPS from gram-negative bacteria. Consequently, the karilysin protease may directly contribute to periodontal tissue damage and the development and/or progression of chronic periodontitis.
The genome of Tannerella forsythia, an etiologic factor of chronic periodontitis, contains several genes encoding putative proteases. Here, we characterized a subtilisin-like serine protease of T. forsythia referred to as mirolase. Recombinant full-length latent promirolase (85 kDa, without its signal peptide) processed itself through sequential autoproteolytic cleavages into a mature enzyme of 40 kDa. Mirolase latency was driven by the N-terminal prodomain (NTP). In stark contrast to almost all known subtilases, the cleaved NTP remained non-covalently associated with mirolase, inhibiting its proteolytic, but not amidolytic, activity. Full activity was observed only after the NTP was gradually, and fully, degraded. Both activity and processing was absolutely dependent on calcium ions, which were also essential for enzyme stability. As a consequence, both serine protease inhibitors and calcium ions chelators inhibited mirolase activity. Activity assays using an array of chromogenic substrates revealed that mirolase specificity is driven not only by the substrate-binding subsite S1, but also by other subsites. Taken together mirolase is a calcium-dependent serine protease of the S8 family with the unique mechanism of activation that may contribute to T. forsythia pathogenicity by degradation of fibrinogen, hemoglobin and the antimicrobial peptide LL-37.
SummaryMetallopeptidases (MPs) are among virulence factors secreted by pathogenic bacteria at the site of infection. One such pathogen is Tannerella forsythia, a member of the microbial consortium that causes peridontitis, arguably the most prevalent infective chronic inflammatory disease known to mankind. The only reported MP secreted by T. forsythia is karilysin, a 52 kDa multidomain protein comprising a central 18 kDa catalytic domain (CD), termed Kly18, flanked by domains unrelated to any known protein. We analysed the 3D structure of Kly18 in the absence and presence of Mg 2+ or Ca 2+ , which are required for function and stability, and found that it evidences most of the structural features characteristic of the CDs of mammalian matrix metalloproteinases (MMPs). Unexpectedly, a peptide was bound to the active-site cleft of Kly18 mimicking a left-behind cleavage product, which revealed that the specificity pocket accommodates bulky hydrophobic side-chains of substrates as in mammalian MMPs. In addition, Kly18 displayed a unique Mg 2+ or Ca 2+ binding site and two flexible segments that could play a role in substrate binding. Phylogenetic and sequence similarity studies revealed that Kly18 is evolutionarily much closer to winged-insect and mammalian MMPs than to potential bacterial counterparts found by genomic sequencing projects. Therefore, we conclude that this first structurally characterized non-mammalian MMP is a xenologue co-opted through horizontal gene transfer during the intimate coexistence between T. forsythia and humans or other animals, in a very rare case of gene shuffling from eukaryotes to prokaryotes. Subsequently, this protein would have evolved in a bacterial environment to give rise to full-length karilysin that is furnished with unique flanking domains that do not conform to the general multidomain architecture of animal MMPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.