Summary Reservoir zonation in a prominent offshore Abu Dhabi oil-field has been investigated by means of seismic sequence stratigraphy. The field is producing from a Rudist reef complex where only discrete zones yield high production rates. An advanced seismic sequence stratigraphy study was conducted with the objective to refine the interpretation and understanding of the extent and thickness variation of the producing zones to optimize further development of the field. This paper presents the methodology and results of a seismic sequence stratigraphic study using innovative technique for the extraction of chronostratigraphic relationships embedded in the seismic data. The underlying concept of the method used is that all stratigraphic events are detected and placed in stratigraphic order. These chronostratigraphic events or surfaces are generated at sub-seismic resolution and tracked throughout the seismic volume within the limits of user-determined bounding surfaces – picked horizons. The integrity of the results is supported by ties to wells and good consistence with a conceptual, traditionally accepted reef complex model.
The pre-Khuff principal hydrocarbon reservoir, Unayzah Formation, consists mainly of distal braid plain sandstones characterized by aeolian and sabkha facies with minor fluvial units. It extends between the pre-Khuff and the Hercynian unconformities. In Abu Dhabi, the Unayzah-A is further subdivided into three members, Members 1 and 2 are comprised of sandstone reservoirs and Member 3 consists of siltstone and shale sediments. Facies controls on reservoir quality are weak. The main controls on porosity reduction of the reservoir are mechanical compaction and silica cementation. Quartz cementation tends to be the most severe in the cleanest, coarsest sandstones and near certain fractures. The presence of clay mineral grain coatings, although reducing the permeability, but locally protects the rock from secondary quartz overgrowth and preserve the porosity to great depths of burial. Without the grain coating, porosity will decrease with depth until the reservoir rock is completely tight. Unayzah reservoir seals are provided by the Basal Khuff Clastics, tight Basal Khuff Carbonate and Middle Khuff Anhydrite. The Basal Khuff Carbonate seal does not appear to be regionally extensive but localized and potentially prospect specific. However, there are insufficient data to accurately define the seal for the Unayzah hydrocarbon accumulations. Due to lack of deep penetrations in Abu Dhabi, basin modeling for Silurian hot shale source rock is challenging. Therefore, much of the unknown source and tectonic information were derived from the surrounding countries. This comes from understanding the regional tectonics and depositional trends of the southeastern Arabian plate, which helped to extrapolate the source trends into the Abu Dhabi area. The basin model shows that oil from Silurian source rock was generated early in the basin history and was widespread by the Late Triassic (220 Ma). Significant gas generation occurred during Lower Cretaceous (140 Ma) and dominated the hydrocarbon system by Middle Cretaceous (110 Ma). During the Early Tertiary (50 Ma), the source rock was highly mature for gas generation and at present-day, the charge is still active in the north offshore of Abu Dhabi. The pre-Khuff charge history showed that the southern offshore and onshore structures are underfilled. The filling of these structures ranges between 50% and 80%, but in some onshore structures the filling is less than 50%. The middle and northern offshore structures are expected to be filled to spill point.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.