This paper discusses the design and implementation of a Single Well Chemical Tracer Test (SWCTT) to evaluate the efficacy of a lab-optimized surfactant-polymer formulation for the Raudhatain Lower Burgan (RALB) reservoir in North Kuwait. A SWCTT was designed upon completing extensive lab and simulation work as discussed in a previous publication (Al-Murayri et al. 2017 and Al-Murayri et al. 2018). SWCTT design work was aimed at confirming the optimal injection/production sequence determined at core flood scale in terms of minimal volumes, rates and duration. The main uncertainties were assessed using numerous sensitivity scenarios. Afterwards, the SWCTT was implemented in the field and the results were carefully analyzed and compared to previously obtained lab andsimulation results. The main objective of this SWCTT was to validate the efficacy of polymer and surfactant solutions in terms of residual oil saturation reduction and injectivity. This invovles comparing residual oil saturation estimates before and after chemical flooding while monitoring injection rates and corresponding wellhead pressures. The SWCTT injection sequence included the following steps:Initial water-flooding, followed by tracer injection, soaking and production to measure oil saturation post water flooding.Pre-flush followed by a main-slug (with 5,000 ppm of surfactant and 500 ppm of polymer) and a post-flush (with only polymer).Sea-water push, followed by tracer injection, soaking and production to measure oil saturation post chemical flooding. Simulation work prior to the execution of the SWCTT test showed encouraging oil desaturation results post chemical flooding within a distance of 10 ft from the well. However, upon analyzing the pilot results, it was realized that there is a gap between the actual SWCTT results and previously obtained lab andsimulation results. This paper sheds light on the design and implementation of the above-mentioned SWCTTwith emphasis on the potential reasons for the realized gap between actual field data and lab/simulation results. The insights from this study are expected to assist in further optimization of surfactant-polymer flooding to economically increase oil recovery from relatively mature reservoirs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.