Background and Aim: Backyard chicken flocks have traditionally been regarded as an essential food source in developed countries; however, they may act as reservoirs and spread various zoonotic bacterial pathogens. This study was designed to investigate the prevalence, phenotypic resistance, biofilm formation (BF), and pathotypes of Escherichia coli isolates from backyard poultry farms. Materials and Methods: Cloacal swabs (n=150) and internal organs (n=150) were collected from 30 backyard chicken flocks; 20 of them were experiencing systemic infection, and the other ten were apparently healthy. Samples were bacteriologically examined for E. coli isolation. Isolates were identified biochemically by the VITEK® 2 COMPACT system (BioMérieux, France). For molecular identification, 16S rRNA was amplified and sequenced. Ten antimicrobials were selected for E. coli antimicrobial susceptibility testing. The minimum inhibitory concentration for each antimicrobial was determined. The extended-spectrum β-lactamase activity in isolates was investigated using cephalosporin/clavulanate combination disks. The ability of isolates for BF was determined by the microtiter plate method. Thirteen virulence genes linked to different E. coli pathotypes and two serotype-related genes were investigated by real-time polymerase chain reaction. Results: Eighty-six E. coli strains were isolated from 30 backyard chicken flocks. The isolates were biochemically identified to the species level. Genetically, sequences of the 16S rRNA gene showed >98% identity with E. coli in the National Center for Biological Information database. The frequency of isolation from diseased flocks was significantly higher (p<0.05) than apparently healthy flocks; 63.9% of the isolates were recovered from cloacal swabs and 36.04% were recovered from internal organs. E. coli isolates showed high resistance to ampicillin (AMP; 75.6%), gentamicin (39.5%), and tetracycline (29.1%). However, none of the isolates were resistant to imipenem. A variable drug resistance profile for E. coli isolates was reported. Twenty-one (24.4%) isolates were sensitive to all ten antimicrobials. Seven (8.1%) isolates were resistant only to AMP, and 28 (32.6%) were resistant to two antimicrobials, whereas the remaining 30 (34.9%) isolates showed multidrug resistance (MDR). Of the 86 isolates, 8 (9.3%) were confirmed as extended-spectrum β-lactamase (ESBL)-producing E. coli by the combination disk diffusion method. All ESBL isolates were MDR with an MDR index of 0.5-0.6. Fifty-seven (66.3%) isolates were capable of forming biofilms; 22 (25.6%) of them were strong biofilm producers, 24 (27.9%) moderate producers, and 11 (12.8%) weak producers. A statistically significant pairwise correlation was obtained for MDR versus BF (r=0.512) and MDR index versus BF (r=0.556). Based on virulence gene profiles, five pathotypes were identified, including enteropathogenic E. coli (39.5%), avian pathogenic E. coli (32.53%), enterohemorrhagic E. coli (EHEC; 9.3%), enterotoxigenic E. coli (ETEC; 5.8%), and enteroaggregative E. coli (EAEC; 1.2%). The lower frequency of EAEC and ETEC was statistically significant than other pathotypes. Three isolates were identified as O157 based on the detection of the rbfO157 gene. Conclusion: This study reported a high prevalence of MDR, suggesting the misuse of antimicrobials in backyard chicken farms. The emergence of ESBL and EHEC isolates in backyard chickens is a public health concern. Furthermore, the backyard flocks environment may harbor different pathogenic bacteria that may enhance the persistence of infection and the transmission to in-contact humans. Regular monitoring for the occurrence of MDR and the zoonotic pathotypes among E. coli in backyard chicken flocks is recommended, as these bacteria can transmit to humans through food products or contaminated environments.
Identification and control of viruses that causes diseases in human, domestic and wild animals represent continuous challenges to medical and veterinary sciences. Many diagnostic techniques have for a long time been used to identify individual infectious viral agents by their clinical signs , symptoms and histopathological changes produced in the susceptible host. But it is not always possible to identify or differentiate the disease on the basis of its signs symptoms and pathology, it thus requires use of other specific diagnostic procedures to clearly identify and confirm the pathogens These procedures involve both conventional as well as state of the art techniques. Several conventional techniques such as isolation in cell culture, serology for both antibody and antigen detection are traditionally used to identify viral pathogens. However, the rapid molecular detection techniques of infectious agents in animals as well as in environment have nowadays become an essential part of any modern diagnostic laboratory. Molecular diagnostic technologies are more advantageous as they offer more sensitive, less time consuming, with high throughput results and provide accurate diagnosis and provide thorough understanding of and discrimination of present and emerging diseases. In addition, these new tools can detect the presence of pathogen before the onset of clinical disease. Here we discuss some aspects of the current and contemplated diagnostic tools and their potential applications for diagnosis of viral diseases of domestic and wild animals in Qatar.
Background Toxoplasma gondii ( T. gondii ) is a zoonotic parasite that can be transmitted from animals to humans, with felids acting as its definitive host. Thus, understanding the epidemiology of this parasite in animal populations is vital to controlling its transmission to humans as well as to other animal groups. Objectives This systematic review and meta‐analysis aims to summarise and analyse reports of T. gondii infection in animal species residing in the Arabian Peninsula. Methods : It was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta‐Analyses (PRISMA), with relevant studies being retrieved from MEDLINE/PubMed, Scopus, Cochrane Library, Google Scholar and ScienceDirect. All articles published in Arabic or English languages between January 2000 and December 2020 were screened for eligibility. Random effects model was used to calculate the pooled prevalence of T. gondii infection in different animal populations which were found to harbour this infection. The critical appraisal tool for prevalence studies designed by the Joanna Briggs Institute (JBI) was used to assess the risk of bias in all included studies. Results A total of 15 studies were retrieved, reporting prevalence estimates from 4 countries in this region and in 13 animal species. Quantitative meta‐analysis estimated a pooled prevalence of 43% in felids [95% confidence interval (CI) = 23–64%, I 2 index = 100%], 48% in sheep (95% CI = 27–70%, I 2 = 99%) and 21% in camels (95% CI = 7–35%, I 2 = 99%). Evidence of possible publication bias was found in both felids and sheep. Conclusions This meta‐analysis estimates a high prevalence of T. gondii infection in animal species which are of high economic and cultural importance to countries of this region. Hence, these findings provide valuable insight to public health authorities as well as economic and animal resources advisors in countries of the Arabian Peninsula.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.