Barley is a very important crop worldwide and has good impact in preserving food security. The impacts of 10 mM proline and 0.5 mM salicylic acid were evaluated on water stressed barley plants (Hordeum vulgare L. Giza126). Salicylic acid and proline treatments led to increased stem length, plant dry weights, chlorophyll concentration, relative water content, activity of antioxidant enzymes, and grain yield under drought stress. Nevertheless, lipid peroxidation, electrolyte leakage (EL), superoxide (O2·−), and hydrogen peroxide (H2O2) significantly decreased in treated barley plants with proline and salicylic acid in both growing seasons as compared with drought treatment only, which caused significant decrease in stem length, plant dry weights, chlorophyll concentration, activity of antioxidant enzymes, as well as biological and grain yield. These results demonstrated the importance of salicylic acid and proline as tolerance inducers of drought stress in barley plants.
BackgroundFruit ripening and softening are key traits that have an effect on food supply, fruit nutritional value and consequently, human health. Since ethylene induces ripening of climacteric fruit, it is one of the main targets to control fruit over ripening that leads to fruit softening and deterioration. The characterization of the ethylene pathway in Arabidopsis and tomato identified key genes that control fruit ripening.Methodology/Principal FindingsTo engineer melon fruit with improved shelf-life, we conducted a translational research experiment. We set up a TILLING platform in a monoecious and climacteric melon line, cloned genes that control ethylene production and screened for induced mutations that lead to fruits with enhanced shelf life. Two missense mutations, L124F and G194D, of the ethylene biosynthetic enzyme, ACC oxidase 1, were identified and the mutant plants were characterized with respect to fruit maturation. The L124F mutation is a conservative mutation occurring away from the enzyme active site and thus was predicted to not affect ethylene production and thus fruit ripening. In contrast, G194D modification occurs in a highly conserved amino acid position predicted, by crystallographic analysis, to affect the enzymatic activity. Phenotypic analysis of the G194D mutant fruit showed complete delayed ripening and yellowing with improved shelf life and, as predicted, the L124F mutation did not have an effect.Conclusions/SignificanceWe constructed a mutant collection of 4023 melon M2 families. Based on the TILLING of 11 genes, we calculated the overall mutation rate of one mutation every 573 kb and identified 8 alleles per tilled kilobase. We also identified a TILLING mutant with enhanced fruit shelf life. This work demonstrates the effectiveness of TILLING as a reverse genetics tool to improve crop species. As cucurbits are model species in different areas of plant biology, we anticipate that the developed tool will be widely exploited by the scientific community.
The impact of biochar and chitosan on barley plants under drought stress conditions was investigated during two field experiments. Our results confirmed that drought stress negatively affected morphological and physiological growth traits of barley plants such as plant height, number of leaves, chlorophyll concentrations, and relative water content. However, electrolyte leakage (EL%), lipid peroxidation (MDA), soluble sugars, sucrose and starch contents significantly increased as a response to drought stress. Additionally, 1000 grain weight, grains yield ha−1 and biological yield significantly decreased in stressed barley plants, also anatomical traits such as upper epidermis, lower epidermis, lamina, and mesophyll tissue thickness as well as vascular bundle diameter of flag leaves significantly decreased compared with control. The use of biochar and chitosan led to significant increases in plant height, number of leaves, and chlorophyll concentrations as well as relative water content; nevertheless these treatments led to significant decreases in electrolyte leakage (EL%) and lipid peroxidation (MDA) in the stressed plants. Moreover, anatomical and yield characters of stressed barley plants were improved with application of biochar and chitosan. The results proved the significance of biochar and chitosan in alleviating the damaging impacts of drought on barley plants.
Salinity is a major obstacle to wheat production worldwide. Salt-affected soils could be used by improving salt-tolerant genotypes depending upon the genetic variation and salt stress response of adapted and donor wheat germplasm. We used a comprehensive set of morpho-physiological and biochemical parameters and simple sequence repeat (SSR) marker technique with multivariate analysis to accurately demonstrate the phenotypic and genetic variation of 18 wheat genotypes under salinity stress. All genotypes were evaluated without NaCl as a control and with 150 mM NaCl, until the onset of symptoms of death in the sensitive plant (after 43 days of salinity treatment). The results showed that the relative change of the genetic variation was high for all parameters, heritability (>60%), and genetic gain (>20%). Stepwise regression analysis, noting the importance of the root dry matter, relative turgidity, and their respective contributions to the shoot dry matter, indicated their relevance in improving and evaluating the salt-tolerant genotypes of breeding programs. The relative change of the genotypes in terms of the relative turgidity and shoot dry matter during salt stress was verified using clustering methods. For cluster analysis, the genotypes were classified into three groups: tolerant, intermediate, and sensitive, representing five, six, and seven genotypes, respectively. The morphological and genetic distances were significantly correlated based on the Mantel test. Of the 23 SSR markers that showed polymorphism, 17 were associated with almost all examined parameters. Therefore, based on the observed molecular marker-phenotypic trait association, the markers were highly useful in detecting tolerant and sensitive genotypes. Thus, it considers a helpful tool for salt tolerance through marker-assisted selection.
ABSTRACT) in control plants which were subsequently unable to recover from the stress. Of noteworthy is that AlSAP rice plants yielded a similar and a 60% seed set under control and stress conditions respectively, with regard to wild-type (WT) plants grown under control conditions. This indicates that AlSAP expression imposes no yield penalty and allows seed production even following a severe drought stress at the vegetative stage. Furthermore, AlSAP rice was shown to accumulate transcripts of a pilot set of eight stressrelated genes at a significantly higher level than WT plants, both under control and stressed conditions. The results suggest that AlSAP expression generates stress tolerance in plants through maintenance of the photosynthetic apparatus integrity and by stimulating an endogenous adaptive potential which is not effectively accomplished in WT plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.