Barley is a very important crop worldwide and has good impact in preserving food security. The impacts of 10 mM proline and 0.5 mM salicylic acid were evaluated on water stressed barley plants (Hordeum vulgare L. Giza126). Salicylic acid and proline treatments led to increased stem length, plant dry weights, chlorophyll concentration, relative water content, activity of antioxidant enzymes, and grain yield under drought stress. Nevertheless, lipid peroxidation, electrolyte leakage (EL), superoxide (O2·−), and hydrogen peroxide (H2O2) significantly decreased in treated barley plants with proline and salicylic acid in both growing seasons as compared with drought treatment only, which caused significant decrease in stem length, plant dry weights, chlorophyll concentration, activity of antioxidant enzymes, as well as biological and grain yield. These results demonstrated the importance of salicylic acid and proline as tolerance inducers of drought stress in barley plants.
Plant growth-promoting bacteria play an essential role in enhancing the physical, chemical and biological characters of soils by facilitating nutrient uptake and water flow, especially under abiotic stress conditions, which are major constrains to agricultural development and production. Drought is one of the most harmful abiotic stress and perhaps the most severe problem facing agricultural sustainability, leading to a severe shortage in crop productivity. Drought affects plant growth by causing hormonal and membrane stability perturbations, nutrient imbalance and physiological disorders. Furthermore, drought causes a remarkable decrease in leaf numbers, relative water content, sugar yield, root yield, chlorophyll a and b and ascorbic acid concentrations. However, the concentrations of total phenolic compounds, electrolyte leakage, lipid peroxidation, amounts of proline, and reactive oxygen species are considerably increased because of drought stress. This negative impact of drought can be eliminated by using plant growth-promoting bacteria (PGPB). Under drought conditions, application of PGPB can improve plant growth by adjusting hormonal balance, maintaining nutrient status and producing plant growth regulators. This role of PGPB positively affects physiological and biochemical characteristics, resulting in increased leaf numbers, sugar yield, relative water content, amounts of photosynthetic pigments and ascorbic acid. Conversely, lipid peroxidation, electrolyte leakage and amounts of proline, total phenolic compounds and reactive oxygen species are decreased under drought in the presence of PGPB. The current review gives an overview on the impact of drought on plants and the pivotal role of PGPB in mitigating the negative effects of drought by enhancing antioxidant defense systems and increasing plant growth and yield to improve sustainable agriculture.
Desert plants are able to survive under harsh environmental stresses inherent to arid and semiarid regions due to their association with bacterial endophytes. However, the identity, functions, and the factors that influence the association of bacterial endophytes with desert plants are poorly known. These bacterial endophytes can be used as an untapped resource to favor plant growth and development in agro-ecosystems of arid regions. The present study is therefore focused on the isolation and identification of bacterial endophytes from two native medicinal plants (Fagonia mollis Delile and Achillea fragrantissima (Forssk) Sch. Bip.) growing spontaneously in the arid region of the South Sinai (Egypt), and characterization of their plant growth promoting (PGP) traits. Thirteen putative bacterial endophytes were isolated from the leaves of both plant species and characterized for their plant growth promoting abilities using molecular and biochemical approaches, as well as greenhouse trials. Selected endophytic bacterial strains were applied to maize plants (Zea mays L. var. Single cross Pioneer 30K08) to further evaluate their PGP abilities under greenhouse conditions. Isolated bacterial strains have variable plant growth promoting activities. Among these activities, isolated bacterial endophytes have the efficacy of phosphate solubilizing with clear zones ranging from 7.6 ± 0.3 to 9.6 ± 0.3 mm. Additionally, the obtained bacterial endophytes increased the productivity of indole acetic acid (IAA) in broth media from 10 to 60 µg·mL−1 with increasing tryptophan concentration from 1 to 5 mg·mL−1. Bacillus and Brevibacillus strains were frequently isolated from the leaves of both plant species, and had significant positive effects on plant growth and shoot phosphorus (P) and nitrogen (N) contents. Results suggest that these endophytes are good candidates as plant growth promoting inoculants to help reduce chemical input in conventional agricultural practices and increase nutrient uptake and stress resilience in plant species.
The impact of biochar and chitosan on barley plants under drought stress conditions was investigated during two field experiments. Our results confirmed that drought stress negatively affected morphological and physiological growth traits of barley plants such as plant height, number of leaves, chlorophyll concentrations, and relative water content. However, electrolyte leakage (EL%), lipid peroxidation (MDA), soluble sugars, sucrose and starch contents significantly increased as a response to drought stress. Additionally, 1000 grain weight, grains yield ha−1 and biological yield significantly decreased in stressed barley plants, also anatomical traits such as upper epidermis, lower epidermis, lamina, and mesophyll tissue thickness as well as vascular bundle diameter of flag leaves significantly decreased compared with control. The use of biochar and chitosan led to significant increases in plant height, number of leaves, and chlorophyll concentrations as well as relative water content; nevertheless these treatments led to significant decreases in electrolyte leakage (EL%) and lipid peroxidation (MDA) in the stressed plants. Moreover, anatomical and yield characters of stressed barley plants were improved with application of biochar and chitosan. The results proved the significance of biochar and chitosan in alleviating the damaging impacts of drought on barley plants.
The editor of this timely book has assembled a team of highly regarded scientists, over 40 contributors, to describe the latest, up-to-date research, theory and applications of this increasingly important area of science.Renowned experts in the field have contributed chapters that describe and discuss some of the most topical aspects of plant genomics. The book is fully illustrated and chapters include comprehensive reference sections.Essential reading for scientists involved in plant genomics and a recommended volume for everyone involved in plant science.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.