This paper represents a parametric study utilizing finite element analysis for twenty-five reinforced concrete semi-circular deep beams. The parameters that were taken into consideration in the current work are radius, height, width, concrete compressive strength and number of supports. It is found that decreasing radius of beam by 16-66% leads to decrease the midspan positive moment, support negative moment, torsional moment and midspan deflection by about 0.3-20%, 2.4-25%, 2-24% and 29-85%, respectively, while the load capacity increases by about 23-158%. The midspan positive moment, support negative moment, torsional moment and load capacity increase by about 20-682%, 20-81%, 20-81% and 21-84%, respectively, whereas midspan deflection decreases by 7-17% when the beam height increases by about 16-66%. The positive moment, negative moment, torsional moment and load capacity increases by about 43-197%, 40-185%, 29-187% and 46-214%, respectively, whereas deflection decreases by about 1.4-3.3% when the beam width increases by about 16-66%. The positive moment, negative moment, torsional moment and load capacity increases by about 10-84%, 9-77%, 9-79% and 11-92%, respectively, whereas deflection decreases by about 0.1-0.5% when the compressive strength increases by 20-220%. Finally, it is found that the positive moment increases by about 36-47% when number of supports increased by 33-66%, while the negative moment increases by about 16-31% when number of supports decreases by 14-29%, whereas the torsional moments and deflection decreases by about 6-55% and 37-84%, respectively when number of supports increases by 33-133%, while load capacity increases by 156-969% when number of support increases by 33-133%.
A parametric study of twenty-five reinforced concrete ring deep beams using finite element analysis is presented in this study. This paper took into account the kind of loading (partial and complete), the diameter, depth, and width of the ring beam, as well as the NO. of supports. When compared to equivalent concentrated central loading, acting a central partial distributed loading of 25-100 percent of the length of span increased capacity of load by about 3-80 percent while decreasing max. deflection and moments of torsion by about 4-14 percent and 1-9 percent, respectively. Decreases in load capacity of about 10-33 percent were observed when beam diameter was increased by 20-80%, while deflection and moments of torsion increased by about 30-145 percent and 8-23 percent, respectively. When the depth of the beam was increased by 12-50 percent, the capacity of load and moments of torsion increased by about 15-61 percent, while deflection reduced by about 8-21 percent. When the circular beam width was increased by 40-160 percent, the capacity of load, deflection, and moments of torsion increased by about 142-690 percent, 26-62 percent, and 137-662 percent, respectively. Finally, when the NO. of supports increased by 25-150 percent, the capacity of load increased by about 70-380 percent, while the deflection and moments of torsion decreased by about 27-71 percent and 16-72 percent, respectively.
This paper presents a parametric study using finite element analysis of twenty six reinforced concrete circular deep beams. The considered parameters are loading type (partial and full), diameter, height and width of the circular beam, in addition to number of supports. It is concluded that applying a central partial uniformly distributed loading by 33-100% of the span length increased the load capacity by about 4-39%, and at the same time, decreased the maximum deflection and torsional moments by about 10-30% and 4-26%, respectively as compared with equivalent concentrated central loading. Increasing beam diameter by 33-167% led to decrease the load capacity by about 7-35%, while the deflection and torsional moments increased by about 41-265% and 24-77%, respectively. The load capacity and torsional moments increased by about 14-68% and 14-86%, respectively whereas deflection decreased by about 7-23% when the height of beam increased by 11-56%. The load capacity, deflection and torsional moments increased by about 163-458%, 54-83% and 160-451%, respectively when the circular beam width increased by 50-150%. Finally, it is found that the load capacity increased by about 85-365%, while the deflection and torsional moments decreased by about 24-56% and 10-46%, respectively when number of support increased by 25-100%.
The current paper presents a review of some previous experimental and theoretical studies concerning reinforced concrete (RC) curved or ring beams, behavior and strength. Due to curvature, it is necessary to include torsional effects in the analysis and design. The most effective parameters worth to be reviewed are; ring diameter, number of supports, width of beam, concrete compressive strength, and width of bearing plate. There are different analysis methods to estimate the load capacity and behavior in addition to finite element analysis. From the previous studies it was concluded that increasing ring diameter decreases the load capacity, while increasing number of supports, width of beam, concrete compressive strength, and width of bearing plate increases the load capacity due to the increase in beam section or its properties. RC ring beams fail in flexure, while the deep ring beams fail in shear in a manner similar to straight beams. Plastic analysis and strut and tie model (STM) are useful tools to analyze curved or ring deep beams effectively. Furthermore, the three-dimensional, nonlinear finite element modelling is ideal for predicting the behavior of RC curved deep beams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.