This paper reviewed related research works and developments on the traditional architectural element “mashrabiya” focusing on its history, design and structure, typology, and functions in hot climates. Moreover, the paper assessed the effect of the traditional mashrabiya on the indoor thermal environment and thermal comfort in a selected case study building. For this purpose, two similar rooms were investigated in a selected historic building with abundant mashrabiyas located in the Makkah Region, specifically in Old Jeddah, Saudi Arabia. The field tests were conducted during a typical hot summer month with two different configurations. The study demonstrated that opening the mashrabiya allowed more airflow into the room during the day and reduced the indoor temperature by up to 2.4 °C as compared to the closed mashrabiya. Besides, the building envelope played an important role in preventing the high fluctuation of the indoor air temperature, where the fluctuation of the rooms air temperature ranged between 2.1 °C and 4.2 °C compared to the outdoor temperature which recorded a fluctuation between 9.4 °C and 16 °C. The data presented here can be used for the future development of the mashrabiya concept and the potential incorporation with passive cooling methods to improve its design according to the requirements of modern buildings in hot climates. Moreover, further studies and tests on mashrabiyas under different climatic conditions are required. Also, the different strategies or materials can be incorporated with mashrabiyas in order to improve its thermal performance.
This paper investigates the novel integration of heat transfer devices into a mashrabiya device to improve indoor thermal comfort conditions in buildings in hot climates. The benchmark case building model was validated using detailed wind tunnel data based on particle image velocimetry (PIV) and Computational Fluid Dynamics (CFD) modelling results. Good agreement was observed between the modelling results and previous works data. Then, three configurations were evaluated: a) base case, b) single row of heat transfer devices, and c) double rows of heat transfer devices combined with the mashrabiya. The results of the building with mashrabiya indicated that the slats' inclination plays a vital role in the airflow distribution in the room, and this was evident with tilting the slats angle to +30° or -30°, as the airflow became more directed and sharper towards the ceiling or the floor. Also, as compared to the benchmark case, the mashrabiya contributed to increasing the airflow rate into the room. Overall, the addition of heat transfer devices decreased the temperature by up to 7.5°C (18.8%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.