Internet of Things Operating Systems (IoT OSs) run, manage and control IoT devices. Therefore, it is important to secure the source code for IoT OSs, especially if they are deployed on devices used for human care and safety. In this paper, we report the results of our investigations of the security status and the presence of security vulnerabilities in the source code of the most popular open source IoT OSs. Through this research, three Static Analysis Tools (Cppcheck, Flawfinder and RATS) were used to examine the code of sixteen different releases of four different C/C++ IoT OSs, with 48 examinations, regarding the presence of vulnerabilities from the Common Weakness Enumeration (CWE). The examination reveals that IoT OS code still suffers from errors that lead to security vulnerabilities and increase the opportunity of security breaches. The total number of errors in IoT OSs is increasing from version to the next, while error density, i.e., errors per 1K of physical Source Lines of Code (SLOC) is decreasing chronologically for all IoT Oss, with few exceptions. The most prevalent vulnerabilities in IoT OS source code were CWE-561, CWE-398 and CWE-563 according to Cppcheck, (CWE-119!/CWE-120), CWE-120 and CWE-126 according to Flawfinder, and CWE-119, CWE-120 and CWE-134 according to RATS. Additionally, the CodeScene tool was used to investigate the development of the evolutionary properties of IoT OSs and the relationship between them and the presence of IoT OS vulnerabilities. CodeScene reveals strong positive correlation between the total number of security errors within IoT OSs and SLOC, as well as strong negative correlation between the total number of security errors and Code Health. CodeScene also indicates strong positive correlation between security error density (errors per 1K SLOC) and the presence of hotspots (frequency of code changes and code complexity), as well as strong negative correlation between security error density and the Qualitative Team Experience, which is a measure of the experience of the IoT OS developers.
Internet of Things (IoT) 's devices are ubiquitous and operate in a heterogonous environment with potential security breaches. IoT Operating Systems (IoT OSs) are the backbone software for running such devices. If IoT OSs are vulnerable to security breaches, higher-level security measures may not help. This paper aims to use Machine Learning (ML) to create a tool called iDetect for detecting vulnerabilities in C/C++ source code of IoT OSs. The source code for 16 releases of IoT OSs (RIOT, Contiki, FreeRTOS, Amazon FreeRTOS) and the Software Assurance Reference Dataset (SARD) were used to create a labeled dataset of vulnerable and benign code with the reference being the Common Weakness Enumeration (CWE) vulnerabilities present in IoT OSs. Studies showed that only a subset of CWEs is present in the C/C++ source code of low-end IoT OSs.The labeled dataset was used to train three ML models for vulnerability detection: Random Forest (RF), Convolutional Neural Network (CNN), and Recurrent Neural Network (RNN). The three models were used independently and RF; compared to CNN and RNN, gave the highest accuracy during the testing phase for binary and multiclass classification. RF was chosen as iDetect's ML classifier. Further evaluation was done on an unseen dataset of 322 code snippets taken from TinyOS. iDetect achieved a macro-averaged F1 score (mF1) of 98.5% and weighted-average F1 score (wF1) of 98% for multiclass classification, F1 score (F1) of 97.8% for binary classification, and superior results compared to all three Static Analysis Tools (SATs) used to collect the training dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.