Minimotif Miner (MnM) is a database and web system for analyzing short functional peptide motifs, termed minimotifs. We present an update to MnM growing the database from ∼300 000 to >1 000 000 minimotif consensus sequences and instances. This growth comes largely from updating data from existing databases and annotation of articles with high-throughput approaches analyzing different types of post-translational modifications. Another update is mapping human proteins and their minimotifs to know human variants from the dbSNP, build 150. Now MnM 4 can be used to generate mechanistic hypotheses about how human genetic variation affect minimotifs and outcomes. One example of the utility of the combined minimotif/SNP tool identifies a loss of function missense SNP in a ubiquitylation minimotif encoded in the excision repair cross-complementing 2 (ERCC2) nucleotide excision repair gene. This SNP reaches genome wide significance for many types of cancer and the variant identified with MnM 4 reveals a more detailed mechanistic hypothesis concerning the role of ERCC2 in cancer. Other updates to the web system include a new architecture with migration of the web system and database to Docker containers for better performance and management. Weblinks:minimotifminer.org and mnm.engr.uconn.edu
Data from different agencies share data of the same individuals. Linking these datasets to identify all the records belonging to the same individuals is a crucial and challenging problem, especially given the large volumes of data. A large number of available algorithms for record linkage are prone to either time inefficiency or low-accuracy in finding matches and non-matches among the records. In this paper we propose efficient as well as reliable sequential and parallel algorithms for the record linkage problem employing hierarchical clustering methods. We employ complete linkage hierarchical clustering algorithms to address this problem. In addition to hierarchical clustering, we also use two other techniques: elimination of duplicate records and blocking. Our algorithms use sorting as a sub-routine to identify identical copies of records. We have tested our algorithms on datasets with millions of synthetic records. Experimental results show that our algorithms achieve nearly 100% accuracy. Parallel implementations achieve almost linear speedups. Time complexities of these algorithms do not exceed those of previous best-known algorithms. Our proposed algorithms outperform previous best-known algorithms in terms of accuracy consuming reasonable run times.
BackgroundRecord linkage integrates records across multiple related data sources identifying duplicates and accounting for possible errors. Real life applications require efficient algorithms to merge these voluminous data sources to find out all records belonging to same individuals. Our recently devised highly efficient record linkage algorithms provide best-known solutions to this challenging problem.MethodWe have developed RLT-S, a freely available web tool, which implements our single linkage clustering algorithm for record linkage. This tool requires input data sets and a small set of configuration settings about these files to work efficiently. RLT-S employs exact match clustering, blocking on a specified attribute and single linkage based hierarchical clustering among these blocks.ResultsRLT-S is an implementation package of our sequential record linkage algorithm. It outperforms previous best-known implementations by a large margin. The tool is at least two times faster for any dataset than the previous best-known tools.ConclusionsRLT-S tool implements our record linkage algorithm that outperforms previous best-known algorithms in this area. This website also contains necessary information such as instructions, submission history, feedback, publications and some other sections to facilitate the usage of the tool.AvailabilityRLT-S is integrated into http://www.rlatools.com, which is currently serving this tool only. The tool is freely available and can be used without login. All data files used in this paper have been stored in https://github.com/abdullah009/DataRLATools. For copies of the relevant programs please see https://github.com/abdullah009/RLATools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.