We present the design of an online social skills development interface for teenagers with autism spectrum disorder (ASD). The interface is intended to enable private conversation practice anywhere, anytime using a web-browser. Users converse informally with a virtual agent, receiving feedback on nonverbal cues in realtime, and summary feedback. The prototype was developed in consultation with an expert UX designer, two psychologists, and a pediatrician. Using the data from 47 individuals, feedback and dialogue generation were automated using a hidden Markov model and a schema-driven dialogue manager capable of handling multi-topic conversations. We conducted a study with nine high-functioning ASD teenagers. Through a thematic analysis of post-experiment interviews, identified several key design considerations, notably: 1) Users should be fully briefed at the outset about the purpose and limitations of the system, to avoid unrealistic expectations. 2) An interface should incorporate positive acknowledgment of behavior change. 3) Realistic appearance of a virtual agent and responsiveness are important in engaging users. 4) Conversation personalization, for instance in prompting laconic users for more input and reciprocal questions, would help the teenagers engage for longer terms and increase the system's utility. CCS CONCEPTS • Human-centered computing → Empirical studies in HCI .
MHD natural convection flow of an electrically conducting fluid along a vertical flat plate with temperature dependent thermal conductivity and conduction effects is analyzed. The governing equations with associated boundary conditions for this phenomenon are converted to dimensionless forms using a suitable transformation. The transformed non-linear equations are then solved using the implicit finite difference method with Keller-box scheme. Numerical results of the velocity, temperature, skin friction coefficient and surface temperature for different values of the magnetic parameter, thermal conductivity variation parameter, Prandtl number and conjugate conduction parameter are presented graphically. Detailed discussion is given for the effects of the aforementioned parameters.
Background
Access to neurological care for Parkinson disease (PD) is a rare privilege for millions of people worldwide, especially in resource-limited countries. In 2013, there were just 1200 neurologists in India for a population of 1.3 billion people; in Africa, the average population per neurologist exceeds 3.3 million people. In contrast, 60,000 people receive a diagnosis of PD every year in the United States alone, and similar patterns of rising PD cases—fueled mostly by environmental pollution and an aging population—can be seen worldwide. The current projection of more than 12 million patients with PD worldwide by 2040 is only part of the picture given that more than 20% of patients with PD remain undiagnosed. Timely diagnosis and frequent assessment are key to ensure timely and appropriate medical intervention, thus improving the quality of life of patients with PD.
Objective
In this paper, we propose a web-based framework that can help anyone anywhere around the world record a short speech task and analyze the recorded data to screen for PD.
Methods
We collected data from 726 unique participants (PD: 262/726, 36.1% were women; non-PD: 464/726, 63.9% were women; average age 61 years) from all over the United States and beyond. A small portion of the data (approximately 54/726, 7.4%) was collected in a laboratory setting to compare the performance of the models trained with noisy home environment data against high-quality laboratory-environment data. The participants were instructed to utter a popular pangram containing all the letters in the English alphabet, “the quick brown fox jumps over the lazy dog.” We extracted both standard acoustic features (mel-frequency cepstral coefficients and jitter and shimmer variants) and deep learning–based embedding features from the speech data. Using these features, we trained several machine learning algorithms. We also applied model interpretation techniques such as Shapley additive explanations to ascertain the importance of each feature in determining the model’s output.
Results
We achieved an area under the curve of 0.753 for determining the presence of self-reported PD by modeling the standard acoustic features through the XGBoost—a gradient-boosted decision tree model. Further analysis revealed that the widely used mel-frequency cepstral coefficient features and a subset of previously validated dysphonia features designed for detecting PD from a verbal phonation task (pronouncing “ahh”) influence the model’s decision the most.
Conclusions
Our model performed equally well on data collected in a controlled laboratory environment and in the wild across different gender and age groups. Using this tool, we can collect data from almost anyone anywhere with an audio-enabled device and help the participants screen for PD remotely, contributing to equity and access in neurological care.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.